|
a |
|
b/gait_nn.py |
|
|
1 |
import settings |
|
|
2 |
import os |
|
|
3 |
|
|
|
4 |
import tensorflow as tf |
|
|
5 |
import tensorflow.contrib.layers as layers |
|
|
6 |
import numpy as np |
|
|
7 |
|
|
|
8 |
from abc import abstractmethod |
|
|
9 |
|
|
|
10 |
slim = tf.contrib.slim |
|
|
11 |
|
|
|
12 |
SUMMARY_PATH = settings.LOGDIR_GAIT_PATH |
|
|
13 |
KEY_SUMMARIES = tf.GraphKeys.SUMMARIES |
|
|
14 |
|
|
|
15 |
SEED = 0 |
|
|
16 |
np.random.seed(SEED) |
|
|
17 |
|
|
|
18 |
|
|
|
19 |
class GaitNN(object): |
|
|
20 |
def __init__(self, name, input_tensor, features, num_of_persons, reuse = False, is_train = True, |
|
|
21 |
count_of_training_examples = 1000): |
|
|
22 |
self.input_tensor = input_tensor |
|
|
23 |
self.is_train = is_train |
|
|
24 |
self.name = name |
|
|
25 |
|
|
|
26 |
self.FEATURES = features |
|
|
27 |
|
|
|
28 |
net = self.pre_process(input_tensor) |
|
|
29 |
net, gait_signature, state = self.get_network(net, is_train, reuse) |
|
|
30 |
|
|
|
31 |
self.network = net |
|
|
32 |
self.gait_signature = gait_signature |
|
|
33 |
self.state = state |
|
|
34 |
|
|
|
35 |
if is_train: |
|
|
36 |
# Initialize placeholders |
|
|
37 |
self.desired_person = tf.placeholder( |
|
|
38 |
dtype = tf.int32, |
|
|
39 |
shape = [], |
|
|
40 |
name = 'desired_person') |
|
|
41 |
|
|
|
42 |
self.desired_person_one_hot = tf.one_hot(self.desired_person, num_of_persons, dtype = tf.float32) |
|
|
43 |
self.loss = self._sigm_ce_loss() |
|
|
44 |
|
|
|
45 |
self.global_step = tf.Variable(0, name = 'global_step', trainable = False) |
|
|
46 |
|
|
|
47 |
self.learning_rate = tf.placeholder( |
|
|
48 |
dtype = tf.float32, |
|
|
49 |
shape = [], |
|
|
50 |
name = 'learning_rate') |
|
|
51 |
|
|
|
52 |
def _learning_rate_decay_fn(learning_rate, global_step): |
|
|
53 |
return tf.train.exponential_decay( |
|
|
54 |
learning_rate, |
|
|
55 |
global_step, |
|
|
56 |
decay_steps = count_of_training_examples * 2, |
|
|
57 |
decay_rate = 0.96, |
|
|
58 |
staircase = True) |
|
|
59 |
|
|
|
60 |
self.optimize = layers.optimize_loss(loss = self.loss, |
|
|
61 |
global_step = self.global_step, |
|
|
62 |
learning_rate = self.learning_rate, |
|
|
63 |
summaries = layers.optimizers.OPTIMIZER_SUMMARIES, |
|
|
64 |
optimizer = tf.train.RMSPropOptimizer, |
|
|
65 |
learning_rate_decay_fn = _learning_rate_decay_fn, |
|
|
66 |
clip_gradients = 0.1, |
|
|
67 |
) |
|
|
68 |
|
|
|
69 |
self.sess = tf.Session() |
|
|
70 |
self.sess.run(tf.global_variables_initializer()) |
|
|
71 |
|
|
|
72 |
# Initialize summaries |
|
|
73 |
if name is not None: |
|
|
74 |
if is_train: |
|
|
75 |
logdir = os.path.join(SUMMARY_PATH, self.name, 'train') |
|
|
76 |
self.summary_writer = tf.train.SummaryWriter(logdir) |
|
|
77 |
|
|
|
78 |
self.ALL_SUMMARIES = tf.merge_all_summaries(KEY_SUMMARIES) |
|
|
79 |
else: |
|
|
80 |
self.summary_writer_d = {} |
|
|
81 |
|
|
|
82 |
for t in ['avg', 'n', 'b', 's']: |
|
|
83 |
logdir = os.path.join(SUMMARY_PATH, self.name, 'val_%s' % t) |
|
|
84 |
self.summary_writer_d[t] = tf.train.SummaryWriter(logdir) |
|
|
85 |
|
|
|
86 |
tf.set_random_seed(SEED) |
|
|
87 |
|
|
|
88 |
@staticmethod |
|
|
89 |
def pre_process(inp): |
|
|
90 |
return inp / 100.0 |
|
|
91 |
|
|
|
92 |
@staticmethod |
|
|
93 |
def get_arg_scope(is_training): |
|
|
94 |
weight_decay_l2 = 0.1 |
|
|
95 |
batch_norm_decay = 0.999 |
|
|
96 |
batch_norm_epsilon = 0.0001 |
|
|
97 |
|
|
|
98 |
with slim.arg_scope([slim.conv2d, slim.fully_connected, layers.separable_convolution2d], |
|
|
99 |
weights_regularizer = slim.l2_regularizer(weight_decay_l2), |
|
|
100 |
biases_regularizer = slim.l2_regularizer(weight_decay_l2), |
|
|
101 |
weights_initializer = layers.variance_scaling_initializer(), |
|
|
102 |
): |
|
|
103 |
batch_norm_params = { |
|
|
104 |
'decay': batch_norm_decay, |
|
|
105 |
'epsilon': batch_norm_epsilon |
|
|
106 |
} |
|
|
107 |
with slim.arg_scope([slim.batch_norm, slim.dropout], |
|
|
108 |
is_training = is_training): |
|
|
109 |
with slim.arg_scope([slim.batch_norm], |
|
|
110 |
**batch_norm_params): |
|
|
111 |
with slim.arg_scope([slim.conv2d, layers.separable_convolution2d, layers.fully_connected], |
|
|
112 |
activation_fn = tf.nn.elu, |
|
|
113 |
normalizer_fn = slim.batch_norm, |
|
|
114 |
normalizer_params = batch_norm_params) as scope: |
|
|
115 |
return scope |
|
|
116 |
|
|
|
117 |
def _sigm_ce_loss(self): |
|
|
118 |
ce = tf.nn.softmax_cross_entropy_with_logits(logits = self.network, labels = self.desired_person_one_hot) |
|
|
119 |
loss = tf.reduce_mean(ce) |
|
|
120 |
|
|
|
121 |
return loss |
|
|
122 |
|
|
|
123 |
def train(self, input_tensor, desired_person, learning_rate): |
|
|
124 |
if not self.is_train: |
|
|
125 |
raise Exception('Network is not in training mode!') |
|
|
126 |
|
|
|
127 |
self.sess.run(self.optimize, feed_dict = { |
|
|
128 |
self.input_tensor: input_tensor, |
|
|
129 |
self.desired_person: desired_person, |
|
|
130 |
self.learning_rate: learning_rate |
|
|
131 |
}) |
|
|
132 |
|
|
|
133 |
def feed_forward(self, x): |
|
|
134 |
out, states = self.sess.run([self.gait_signature, self.state], feed_dict = {self.input_tensor: x}) |
|
|
135 |
|
|
|
136 |
return out, states |
|
|
137 |
|
|
|
138 |
def write_test_summary(self, err, epoch, t = 'all'): |
|
|
139 |
loss_summ = tf.Summary() |
|
|
140 |
loss_summ.value.add( |
|
|
141 |
tag = 'Classification in percent', |
|
|
142 |
simple_value = float(err)) |
|
|
143 |
|
|
|
144 |
self.summary_writer_d[t].add_summary(loss_summ, epoch) |
|
|
145 |
self.summary_writer_d[t].flush() |
|
|
146 |
|
|
|
147 |
def write_summary(self, inputs, desired_person, learning_rate, write_frequency = 50): |
|
|
148 |
step = tf.train.global_step(self.sess, self.global_step) |
|
|
149 |
|
|
|
150 |
if step % write_frequency == 0: |
|
|
151 |
feed_dict = { |
|
|
152 |
self.input_tensor: inputs, |
|
|
153 |
self.desired_person: desired_person, |
|
|
154 |
self.learning_rate: learning_rate, |
|
|
155 |
} |
|
|
156 |
|
|
|
157 |
summary, loss = self.sess.run([self.ALL_SUMMARIES, self.loss], feed_dict = feed_dict) |
|
|
158 |
self.summary_writer.add_summary(summary, step) |
|
|
159 |
self.summary_writer.flush() |
|
|
160 |
|
|
|
161 |
def save(self, checkpoint_path, name): |
|
|
162 |
if not os.path.exists(checkpoint_path): |
|
|
163 |
os.mkdir(checkpoint_path) |
|
|
164 |
|
|
|
165 |
checkpoint_name_path = os.path.join(checkpoint_path, '%s.ckpt' % name) |
|
|
166 |
all_vars = tf.get_collection(tf.GraphKeys.MODEL_VARIABLES, scope = 'GaitNN') |
|
|
167 |
|
|
|
168 |
saver = tf.train.Saver(all_vars) |
|
|
169 |
saver.save(self.sess, checkpoint_name_path) |
|
|
170 |
|
|
|
171 |
def restore(self, checkpoint_path): |
|
|
172 |
all_vars = tf.get_collection(tf.GraphKeys.MODEL_VARIABLES, scope = 'GaitNN') |
|
|
173 |
|
|
|
174 |
saver = tf.train.Saver(all_vars) |
|
|
175 |
saver.restore(self.sess, checkpoint_path) |
|
|
176 |
|
|
|
177 |
@staticmethod |
|
|
178 |
def residual_block(net, ch = 256, ch_inner = 128, scope = None, reuse = None, stride = 1): |
|
|
179 |
""" |
|
|
180 |
Bottleneck v2 |
|
|
181 |
""" |
|
|
182 |
|
|
|
183 |
with slim.arg_scope([layers.convolution2d], |
|
|
184 |
activation_fn = None, |
|
|
185 |
normalizer_fn = None): |
|
|
186 |
with tf.variable_scope(scope, 'ResidualBlock', reuse = reuse): |
|
|
187 |
in_net = net |
|
|
188 |
|
|
|
189 |
if stride > 1: |
|
|
190 |
net = layers.convolution2d(net, ch, kernel_size = 1, stride = stride) |
|
|
191 |
|
|
|
192 |
in_net = layers.batch_norm(in_net) |
|
|
193 |
in_net = tf.nn.relu(in_net) |
|
|
194 |
in_net = layers.convolution2d(in_net, ch_inner, 1) |
|
|
195 |
|
|
|
196 |
in_net = layers.batch_norm(in_net) |
|
|
197 |
in_net = tf.nn.relu(in_net) |
|
|
198 |
in_net = layers.convolution2d(in_net, ch_inner, 3, stride = stride) |
|
|
199 |
|
|
|
200 |
in_net = layers.batch_norm(in_net) |
|
|
201 |
in_net = tf.nn.relu(in_net) |
|
|
202 |
in_net = layers.convolution2d(in_net, ch, 1, activation_fn = None) |
|
|
203 |
|
|
|
204 |
net = tf.nn.relu(in_net + net) |
|
|
205 |
|
|
|
206 |
return net |
|
|
207 |
|
|
|
208 |
@abstractmethod |
|
|
209 |
def get_network(self, input_tensor, is_training, reuse = False): |
|
|
210 |
pass |
|
|
211 |
|
|
|
212 |
|
|
|
213 |
class GaitNetwork(GaitNN): |
|
|
214 |
FEATURES = 512 |
|
|
215 |
|
|
|
216 |
def __init__(self, name = None, num_of_persons = 0, recurrent_unit = 'GRU', rnn_layers = 1, |
|
|
217 |
reuse = False, is_training = False, input_net = None): |
|
|
218 |
tf.set_random_seed(SEED) |
|
|
219 |
|
|
|
220 |
if num_of_persons <= 0 and is_training: |
|
|
221 |
raise Exception('Parameter num_of_persons has to be greater than zero when thaining') |
|
|
222 |
|
|
|
223 |
self.num_of_persons = num_of_persons |
|
|
224 |
self.rnn_layers = rnn_layers |
|
|
225 |
self.recurrent_unit = recurrent_unit |
|
|
226 |
|
|
|
227 |
if input_net is None: |
|
|
228 |
input_tensor = tf.placeholder( |
|
|
229 |
dtype = tf.float32, |
|
|
230 |
shape = (None, 17, 17, 32), |
|
|
231 |
name = 'input_image') |
|
|
232 |
else: |
|
|
233 |
input_tensor = input_net |
|
|
234 |
|
|
|
235 |
super().__init__(name, input_tensor, self.FEATURES, num_of_persons, reuse, is_training) |
|
|
236 |
|
|
|
237 |
def get_network(self, input_tensor, is_training, reuse = False): |
|
|
238 |
net = input_tensor |
|
|
239 |
|
|
|
240 |
with tf.variable_scope('GaitNN', reuse = reuse): |
|
|
241 |
with slim.arg_scope(self.get_arg_scope(is_training)): |
|
|
242 |
with tf.variable_scope('DownSampling'): |
|
|
243 |
with tf.variable_scope('17x17'): |
|
|
244 |
net = layers.convolution2d(net, num_outputs = 256, kernel_size = 1) |
|
|
245 |
slim.repeat(net, 3, self.residual_block, ch = 256, ch_inner = 64) |
|
|
246 |
|
|
|
247 |
with tf.variable_scope('8x8'): |
|
|
248 |
net = self.residual_block(net, ch = 512, ch_inner = 64, stride = 2) |
|
|
249 |
slim.repeat(net, 2, self.residual_block, ch = 512, ch_inner = 128) |
|
|
250 |
|
|
|
251 |
with tf.variable_scope('4x4'): |
|
|
252 |
net = self.residual_block(net, ch = 512, ch_inner = 128, stride = 2) |
|
|
253 |
slim.repeat(net, 1, self.residual_block, ch = 512, ch_inner = 256) |
|
|
254 |
|
|
|
255 |
net = layers.convolution2d(net, num_outputs = 256, kernel_size = 1) |
|
|
256 |
net = layers.convolution2d(net, num_outputs = 256, kernel_size = 3) |
|
|
257 |
|
|
|
258 |
with tf.variable_scope('FullyConnected'): |
|
|
259 |
# net = tf.reduce_mean(net, [1, 2], name = 'GlobalPool') |
|
|
260 |
net = layers.flatten(net) |
|
|
261 |
net = layers.fully_connected(net, 512, activation_fn = None, normalizer_fn = None) |
|
|
262 |
|
|
|
263 |
with tf.variable_scope('Recurrent', initializer = tf.contrib.layers.xavier_initializer()): |
|
|
264 |
cell_type = { |
|
|
265 |
'GRU': tf.nn.rnn_cell.GRUCell, |
|
|
266 |
'LSTM': tf.nn.rnn_cell.LSTMCell |
|
|
267 |
} |
|
|
268 |
|
|
|
269 |
cell = cell_type[self.recurrent_unit](self.FEATURES) |
|
|
270 |
cell = tf.nn.rnn_cell.MultiRNNCell([cell] * self.rnn_layers, state_is_tuple = True) |
|
|
271 |
|
|
|
272 |
net = tf.expand_dims(net, 0) |
|
|
273 |
net, state = tf.nn.dynamic_rnn(cell, net, initial_state = cell.zero_state(1, dtype = tf.float32)) |
|
|
274 |
net = tf.reshape(net, [-1, self.FEATURES]) |
|
|
275 |
|
|
|
276 |
# Temporal Avg-Pooling |
|
|
277 |
gait_signature = tf.reduce_mean(net, 0) |
|
|
278 |
|
|
|
279 |
if is_training: |
|
|
280 |
net = tf.expand_dims(gait_signature, 0) |
|
|
281 |
net = layers.dropout(net, 0.7) |
|
|
282 |
|
|
|
283 |
with tf.variable_scope('Logits'): |
|
|
284 |
net = layers.fully_connected(net, self.num_of_persons, activation_fn = None, |
|
|
285 |
normalizer_fn = None) |
|
|
286 |
|
|
|
287 |
return net, gait_signature, state |