function [x F] = golden(xmin,x,xmax,d,niter)
% Minimizes the objetive function in the direction of d by the golden section
% method. This handles functions with any degree of non-smoothness
% with the only assumption that the function is unimodal, i.e. it
% has a single minimum in the interval
% Input:
% xmin........Lower bound for x
% x...........Current design point
% xmax........Upper bound for x
% d...........Search vector
% niter.......Number of iterations to perform
% Output:
% x...........Updated design variable vector
% F...........Associated objective function value
% Find the limit of alpha within the box constraints xmin and xmax
golden = 0.618;
B = 1.0e10;
bb = 1.0e10;
for j=1:length(x)
if d(j)>0
bb = (xmax(j)-x(j))/d(j);
end
if d(j)<0
bb = (xmin(j)-x(j))/d(j);
end;
B = min(B,bb);
end
B = 1.1*B; % Extend a little to allow the exterior penalty to work
A = 0; % Left interval end. Always zero because we have a search direction
% Compute initial golden section points and their function values
alpha1 = B-(B-A)*golden;
alpha2 = A+(B-A)*golden;
F1 = ObjectivePenal(xmin,x+alpha1*d,xmax);
F2 = ObjectivePenal(xmin,x+alpha2*d,xmax);
for i=1:niter
if (F1 <= F2)
B = alpha2;
alpha2 = alpha1;
F2 = F1;
alpha1 = B - (B-A)*golden;
F1 = ObjectivePenal(xmin,x+alpha1*d,xmax);
else
A = alpha1;
alpha1 = alpha2;
F1 = F2;
alpha2 = A + (B-A)*golden;
F2 = ObjectivePenal(xmin,x+alpha2*d,xmax);
end
end
% Update design variable vector
x = x+alpha1*d;
F = F1;