Switch to side-by-side view

--- a
+++ b/app/resources/b3d/math3d.py
@@ -0,0 +1,144 @@
+import math
+
+
+# Converts angle from degree to radian	
+def to_radian(angle):
+	return angle / 180.0 * math.pi
+
+
+# Constructs a quaternion from a rotation of degree 'angle' around vector 'axis'
+def quaternion(axis, angle):
+	angle *= 0.5
+	sinAngle = math.sin(to_radian(angle))
+	return normalize((axis[0] * sinAngle, axis[1] * sinAngle, axis[2] * sinAngle, math.cos(to_radian(angle))))
+
+
+# Normalizes quaternion 'q'
+def normalize(q):
+	length = math.sqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3])
+	return (q[0] / length, q[1] / length, q[2] / length, q[3] / length)
+
+
+# Multiplies 2 quaternions : 'q1' * 'q2'	
+def multiply_quat(q1, q2):
+	return (q1[3] * q2[0] + q1[0] * q2[3] + q1[1] * q2[2] - q1[2] * q2[1],
+			q1[3] * q2[1] + q1[1] * q2[3] + q1[2] * q2[0] - q1[0] * q2[2],
+			q1[3] * q2[2] + q1[2] * q2[3] + q1[0] * q2[1] - q1[1] * q2[0],
+			q1[3] * q2[3] - q1[0] * q2[0] - q1[1] * q2[1] - q1[2] * q2[2])
+
+
+# Converts quaternion 'q' to a rotation matrix
+def matrix_from_quat(q):
+	x2 = q[0] * q[0]
+	y2 = q[1] * q[1]
+	z2 = q[2] * q[2]
+	xy = q[0] * q[1]
+	xz = q[0] * q[2]
+	yz = q[1] * q[2]
+	wx = q[3] * q[0]
+	wy = q[3] * q[1]
+	wz = q[3] * q[2]
+	return (1.0 - 2.0 * (y2 + z2), 2.0 * (xy - wz), 2.0 * (xz + wy), 0.0,
+			2.0 * (xy + wz), 1.0 - 2.0 * (x2 + z2), 2.0 * (yz - wx), 0.0,
+			2.0 * (xz - wy), 2.0 * (yz + wx), 1.0 - 2.0 * (x2 + y2), 0.0,
+			0.0, 0.0, 0.0, 1.0)
+
+
+# Constructs a translation matrix
+def matrix_from_trans(trans):
+	return (1, 0, 0, trans[0],
+			0, 1, 0, trans[1],
+			0, 0, 1, trans[2],
+			0, 0, 0, 1)
+
+
+# Returns an identity matrix
+def identity_matrix():
+	return (1, 0, 0, 0,
+			0, 1, 0, 0,
+			0, 0, 1, 0,
+			0, 0, 0, 1)
+
+
+# Multiplies 2 Mat4 : 'm1' * 'm2'			
+def multiply_matrix(m1, m2):
+	res = []
+	for i in range(0, 4):
+		for j in range(0, 4):
+			res.append(m1[i * 4] * m2[j] + m1[i * 4 + 1] * m2[j + 4] + m1[i * 4 + 2] * m2[j + 8] + m1[i * 4 + 3] * m2[j + 12])
+	return res
+
+
+# Multiplies matrix 'm' by vector 'v'
+def multiply_mat_by_vec(m, v):
+	w = 1.0
+	if len(v) == 4:
+		w = v[3]
+	return (m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3] * w,
+			m[4] * v[0] + m[5] * v[1] + m[6] * v[2] + m[7] * w,
+			m[8] * v[0] + m[9] * v[1] + m[10] * v[2] + m[11] * w,
+			m[12] * v[0] + m[13] * v[1] + m[14] * v[2] + m[15] * w)
+
+
+# Transposes matrix 'm'
+def transpose(m):
+	return (m[0], m[4], m[8], m[12],
+			m[1], m[5], m[9], m[13],
+			m[2], m[6], m[10], m[14],
+			m[3], m[7], m[11], m[15])
+
+
+# Calculates inverse of matrix m
+# Reimplement of gluInvertMatrix
+def invert_matrix(m):
+	inv = []
+	inv.append(m[5] * m[10] * m[15] - m[5] * m[11] * m[14] - m[9] * m[6] * m[15] + m[9] * m[7] * m[14] + m[13] * m[6] * m[11] - m[13] * m[7] * m[10])
+	inv.append(-m[1] * m[10] * m[15] + m[1] * m[11] * m[14] + m[9] * m[2] * m[15] - m[9] * m[3] * m[14] - m[13] * m[2] * m[11] + m[13] * m[3] * m[10])
+	inv.append(m[1] * m[6] * m[15] - m[1] * m[7] * m[14] - m[5] * m[2] * m[15] + m[5] * m[3] * m[14] + m[13] * m[2] * m[7] - m[13] * m[3] * m[6])
+	inv.append(-m[1] * m[6] * m[11] + m[1] * m[7] * m[10] + m[5] * m[2] * m[11] - m[5] * m[3] * m[10] - m[9] * m[2] * m[7] + m[9] * m[3] * m[6])
+	inv.append(-m[4] * m[10] * m[15] + m[4] * m[11] * m[14] + m[8] * m[6] * m[15] - m[8] * m[7] * m[14] - m[12] * m[6] * m[11] + m[12] * m[7] * m[10])
+	inv.append(m[0] * m[10] * m[15] - m[0] * m[11] * m[14] - m[8] * m[2] * m[15] + m[8] * m[3] * m[14] + m[12] * m[2] * m[11] - m[12] * m[3] * m[10])
+	inv.append(-m[0] * m[6] * m[15] + m[0] * m[7] * m[14] + m[4] * m[2] * m[15] - m[4] * m[3] * m[14] - m[12] * m[2] * m[7] + m[12] * m[3] * m[6])
+	inv.append(m[0] * m[6] * m[11] - m[0] * m[7] * m[10] - m[4] * m[2] * m[11] + m[4] * m[3] * m[10] + m[8] * m[2] * m[7] - m[8] * m[3] * m[6])
+	inv.append(m[4] * m[9] * m[15] - m[4] * m[11] * m[13] - m[8] * m[5] * m[15] + m[8] * m[7] * m[13] + m[12] * m[5] * m[11] - m[12] * m[7] * m[9])
+	inv.append(-m[0] * m[9] * m[15] + m[0] * m[11] * m[13] + m[8] * m[1] * m[15] - m[8] * m[3] * m[13] - m[12] * m[1] * m[11] + m[12] * m[3] * m[9])
+	inv.append(m[0] * m[5] * m[15] - m[0] * m[7] * m[13] - m[4] * m[1] * m[15] + m[4] * m[3] * m[13] + m[12] * m[1] * m[7] - m[12] * m[3] * m[5])
+	inv.append(-m[0] * m[5] * m[11] + m[0] * m[7] * m[9] + m[4] * m[1] * m[11] - m[4] * m[3] * m[9] - m[8] * m[1] * m[7] + m[8] * m[3] * m[5])
+	inv.append(-m[4] * m[9] * m[14] + m[4] * m[10] * m[13] + m[8] * m[5] * m[14] - m[8] * m[6] * m[13] - m[12] * m[5] * m[10] + m[12] * m[6] * m[9])
+	inv.append(m[0] * m[9] * m[14] - m[0] * m[10] * m[13] - m[8] * m[1] * m[14] + m[8] * m[2] * m[13] + m[12] * m[1] * m[10] - m[12] * m[2] * m[9])
+	inv.append(-m[0] * m[5] * m[14] + m[0] * m[6] * m[13] + m[4] * m[1] * m[14] - m[4] * m[2] * m[13] - m[12] * m[1] * m[6] + m[12] * m[2] * m[5])
+	inv.append(m[0] * m[5] * m[10] - m[0] * m[6] * m[9] - m[4] * m[1] * m[10] + m[4] * m[2] * m[9] + m[8] * m[1] * m[6] - m[8] * m[2] * m[5])
+	
+	det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12]
+	if det == 0:
+		return None
+	
+	det = 1.0 / det
+	mOut = []
+	for i in range(16):
+		mOut.append(inv[i] * det)
+	return mOut
+
+
+# Calculates length^2 of vector 'v'	
+def length2(v):
+	return v[0] * v[0] + v[1] * v[1] + v[2] * v[2]
+
+	
+# Calculates vector dot product : 'v1' * 'v2'	
+def dot(v1, v2):
+	return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2]
+
+	
+# Calculates vector cross product : 'v1' x 'v2'
+def cross(v1, v2):
+	return (v1[1] * v2[2] - v1[2] * v2[1], v1[2] * v2[0] - v1[0] * v2[2], v1[0] * v2[1] - v1[1] * v2[0])
+
+	
+# Normalizes vector 'v'
+def normalize_vec(v):
+	l2 = length2(v)
+	if l2 == 0:
+		return (0, 0, 0)
+	l = math.sqrt(l2)
+	return (v[0] / l, v[1] / l, v[2] / l)
\ No newline at end of file