[4de1c7]: / app / resources / LeapSDK / v3_python27 / include / LeapMath.h

Download this file

1051 lines (980 with data), 28.5 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
/******************************************************************************\
* Copyright (C) 2012-2016 Leap Motion, Inc. All rights reserved. *
* Leap Motion proprietary and confidential. Not for distribution. *
* Use subject to the terms of the Leap Motion SDK Agreement available at *
* https://developer.leapmotion.com/sdk_agreement, or another agreement *
* between Leap Motion and you, your company or other organization. *
\******************************************************************************/
#if !defined(__LeapMath_h__)
#define __LeapMath_h__
#include <cmath>
#include <iostream>
#include <sstream>
#include <float.h>
#include <algorithm>
namespace Leap {
/**
* The constant pi as a single precision floating point number.
* @since 1.0
*/
static const float PI = 3.1415926536f;
/**
* The constant ratio to convert an angle measure from degrees to radians.
* Multiply a value in degrees by this constant to convert to radians.
* @since 1.0
*/
static const float DEG_TO_RAD = 0.0174532925f;
/**
* The constant ratio to convert an angle measure from radians to degrees.
* Multiply a value in radians by this constant to convert to degrees.
* @since 1.0
*/
static const float RAD_TO_DEG = 57.295779513f;
/**
* The difference between 1 and the least value greater than 1 that is
* representable as a float.
* @since 2.0
*/
static const float EPSILON = 1.192092896e-07f;
/**
* The Vector struct represents a three-component mathematical vector or point
* such as a direction or position in three-dimensional space.
*
* The Leap Motion software employs a right-handed Cartesian coordinate system.
* Values given are in units of real-world millimeters. The origin is centered
* at the center of the Leap Motion Controller. The x- and z-axes lie in the horizontal
* plane, with the x-axis running parallel to the long edge of the device.
* The y-axis is vertical, with positive values increasing upwards (in contrast
* to the downward orientation of most computer graphics coordinate systems).
* The z-axis has positive values increasing away from the computer screen.
*
* \image html images/Leap_Axes.png
* @since 1.0
*/
struct Vector {
/**
* Creates a new Vector with all components set to zero.
* @since 1.0
*/
Vector() :
x(0), y(0), z(0) {}
/**
* Creates a new Vector with the specified component values.
*
* \include Vector_Constructor_1.txt
* @since 1.0
*/
Vector(float _x, float _y, float _z) :
x(_x), y(_y), z(_z) {}
/**
* Copies the specified Vector.
*
* \include Vector_Constructor_2.txt
* @since 1.0
*/
Vector(const Vector& vector) :
x(vector.x), y(vector.y), z(vector.z) {}
/**
* The zero vector: (0, 0, 0)
*
* \include Vector_Zero.txt
* @since 1.0
*/
static const Vector& zero() {
static Vector s_zero(0, 0, 0);
return s_zero;
}
/**
* The x-axis unit vector: (1, 0, 0)
*
* \include Vector_XAxis.txt
* @since 1.0
*/
static const Vector& xAxis() {
static Vector s_xAxis(1, 0, 0);
return s_xAxis;
}
/**
* The y-axis unit vector: (0, 1, 0)
*
* \include Vector_YAxis.txt
* @since 1.0
*/
static const Vector& yAxis() {
static Vector s_yAxis(0, 1, 0);
return s_yAxis;
}
/**
* The z-axis unit vector: (0, 0, 1)
*
* \include Vector_ZAxis.txt
* @since 1.0
*/
static const Vector& zAxis() {
static Vector s_zAxis(0, 0, 1);
return s_zAxis;
}
/**
* The unit vector pointing left along the negative x-axis: (-1, 0, 0)
*
* \include Vector_Left.txt
* @since 1.0
*/
static const Vector& left() {
static Vector s_left(-1, 0, 0);
return s_left;
}
/**
* The unit vector pointing right along the positive x-axis: (1, 0, 0)
*
* \include Vector_Right.txt
* @since 1.0
*/
static const Vector& right() {
return xAxis();
}
/**
* The unit vector pointing down along the negative y-axis: (0, -1, 0)
*
* \include Vector_Down.txt
* @since 1.0
*/
static const Vector& down() {
static Vector s_down(0, -1, 0);
return s_down;
}
/**
* The unit vector pointing up along the positive y-axis: (0, 1, 0)
*
* \include Vector_Up.txt
* @since 1.0
*/
static const Vector& up() {
return yAxis();
}
/**
* The unit vector pointing forward along the negative z-axis: (0, 0, -1)
*
* \include Vector_Forward.txt
* @since 1.0
*/
static const Vector& forward() {
static Vector s_forward(0, 0, -1);
return s_forward;
}
/**
* The unit vector pointing backward along the positive z-axis: (0, 0, 1)
*
* \include Vector_Backward.txt
* @since 1.0
*/
static const Vector& backward() {
return zAxis();
}
/**
* The magnitude, or length, of this vector.
*
* The magnitude is the L2 norm, or Euclidean distance between the origin and
* the point represented by the (x, y, z) components of this Vector object.
*
* \include Vector_Magnitude.txt
*
* @returns The length of this vector.
* @since 1.0
*/
float magnitude() const {
return std::sqrt(x*x + y*y + z*z);
}
/**
* The square of the magnitude, or length, of this vector.
*
* \include Vector_Magnitude_Squared.txt
*
* @returns The square of the length of this vector.
* @since 1.0
*/
float magnitudeSquared() const {
return x*x + y*y + z*z;
}
/**
* The distance between the point represented by this Vector
* object and a point represented by the specified Vector object.
*
* \include Vector_DistanceTo.txt
*
* @param other A Vector object.
* @returns The distance from this point to the specified point.
* @since 1.0
*/
float distanceTo(const Vector& other) const {
return std::sqrt((x - other.x)*(x - other.x) +
(y - other.y)*(y - other.y) +
(z - other.z)*(z - other.z));
}
/**
* The angle between this vector and the specified vector in radians.
*
* The angle is measured in the plane formed by the two vectors. The
* angle returned is always the smaller of the two conjugate angles.
* Thus <tt>A.angleTo(B) == B.angleTo(A)</tt> and is always a positive
* value less than or equal to pi radians (180 degrees).
*
* If either vector has zero length, then this function returns zero.
*
* \image html images/Math_AngleTo.png
*
* \include Vector_AngleTo.txt
*
* @param other A Vector object.
* @returns The angle between this vector and the specified vector in radians.
* @since 1.0
*/
float angleTo(const Vector& other) const {
float denom = this->magnitudeSquared() * other.magnitudeSquared();
if (denom <= EPSILON) {
return 0.0f;
}
float val = this->dot(other) / std::sqrt(denom);
if (val >= 1.0f) {
return 0.0f;
} else if (val <= -1.0f) {
return PI;
}
return std::acos(val);
}
/**
* The pitch angle in radians.
*
* Pitch is the angle between the negative z-axis and the projection of
* the vector onto the y-z plane. In other words, pitch represents rotation
* around the x-axis.
* If the vector points upward, the returned angle is between 0 and pi radians
* (180 degrees); if it points downward, the angle is between 0 and -pi radians.
*
* \image html images/Math_Pitch_Angle.png
*
* \include Vector_Pitch.txt
*
* @returns The angle of this vector above or below the horizon (x-z plane).
* @since 1.0
*/
float pitch() const {
return std::atan2(y, -z);
}
/**
* The yaw angle in radians.
*
* Yaw is the angle between the negative z-axis and the projection of
* the vector onto the x-z plane. In other words, yaw represents rotation
* around the y-axis. If the vector points to the right of the negative z-axis,
* then the returned angle is between 0 and pi radians (180 degrees);
* if it points to the left, the angle is between 0 and -pi radians.
*
* \image html images/Math_Yaw_Angle.png
*
* \include Vector_Yaw.txt
*
* @returns The angle of this vector to the right or left of the negative z-axis.
* @since 1.0
*/
float yaw() const {
return std::atan2(x, -z);
}
/**
* The roll angle in radians.
*
* Roll is the angle between the y-axis and the projection of
* the vector onto the x-y plane. In other words, roll represents rotation
* around the z-axis. If the vector points to the left of the y-axis,
* then the returned angle is between 0 and pi radians (180 degrees);
* if it points to the right, the angle is between 0 and -pi radians.
*
* \image html images/Math_Roll_Angle.png
*
* Use this function to get roll angle of the plane to which this vector is a
* normal. For example, if this vector represents the normal to the palm,
* then this function returns the tilt or roll of the palm plane compared
* to the horizontal (x-z) plane.
*
* \include Vector_Roll.txt
*
* @returns The angle of this vector to the right or left of the y-axis.
* @since 1.0
*/
float roll() const {
return std::atan2(x, -y);
}
/**
* The dot product of this vector with another vector.
*
* The dot product is the magnitude of the projection of this vector
* onto the specified vector.
*
* \image html images/Math_Dot.png
*
* \include Vector_Dot.txt
*
* @param other A Vector object.
* @returns The dot product of this vector and the specified vector.
* @since 1.0
*/
float dot(const Vector& other) const {
return (x * other.x) + (y * other.y) + (z * other.z);
}
/**
* The cross product of this vector and the specified vector.
*
* The cross product is a vector orthogonal to both original vectors.
* It has a magnitude equal to the area of a parallelogram having the
* two vectors as sides. The direction of the returned vector is
* determined by the right-hand rule. Thus <tt>A.cross(B) == -B.cross(A).</tt>
*
* \image html images/Math_Cross.png
*
* \include Vector_Cross.txt
*
* @param other A Vector object.
* @returns The cross product of this vector and the specified vector.
* @since 1.0
*/
Vector cross(const Vector& other) const {
return Vector((y * other.z) - (z * other.y),
(z * other.x) - (x * other.z),
(x * other.y) - (y * other.x));
}
/**
* A normalized copy of this vector.
*
* A normalized vector has the same direction as the original vector,
* but with a length of one.
*
* \include Vector_Normalized.txt
*
* @returns A Vector object with a length of one, pointing in the same
* direction as this Vector object.
* @since 1.0
*/
Vector normalized() const {
float denom = this->magnitudeSquared();
if (denom <= EPSILON) {
return zero();
}
denom = 1.0f / std::sqrt(denom);
return Vector(x * denom, y * denom, z * denom);
}
/**
* A copy of this vector pointing in the opposite direction.
*
* \include Vector_Negate.txt
*
* @returns A Vector object with all components negated.
* @since 1.0
*/
Vector operator-() const {
return Vector(-x, -y, -z);
}
/**
* Add vectors component-wise.
*
* \include Vector_Plus.txt
* @since 1.0
*/
Vector operator+(const Vector& other) const {
return Vector(x + other.x, y + other.y, z + other.z);
}
/**
* Subtract vectors component-wise.
*
* \include Vector_Minus.txt
* @since 1.0
*/
Vector operator-(const Vector& other) const {
return Vector(x - other.x, y - other.y, z - other.z);
}
/**
* Multiply vector by a scalar.
*
* \include Vector_Times.txt
* @since 1.0
*/
Vector operator*(float scalar) const {
return Vector(x * scalar, y * scalar, z * scalar);
}
/**
* Divide vector by a scalar.
*
* \include Vector_Divide.txt
* @since 1.0
*/
Vector operator/(float scalar) const {
return Vector(x / scalar, y / scalar, z / scalar);
}
#if !defined(SWIG)
/**
* Multiply vector by a scalar on the left-hand side (C++ only).
*
* \include Vector_Left_Times.txt
* @since 1.0
*/
friend Vector operator*(float scalar, const Vector& vector) {
return Vector(vector.x * scalar, vector.y * scalar, vector.z * scalar);
}
#endif
/**
* Add vectors component-wise and assign the sum.
* @since 1.0
*/
Vector& operator+=(const Vector& other) {
x += other.x;
y += other.y;
z += other.z;
return *this;
}
/**
* Subtract vectors component-wise and assign the difference.
* @since 1.0
*/
Vector& operator-=(const Vector& other) {
x -= other.x;
y -= other.y;
z -= other.z;
return *this;
}
/**
* Multiply vector by a scalar and assign the product.
* @since 1.0
*/
Vector& operator*=(float scalar) {
x *= scalar;
y *= scalar;
z *= scalar;
return *this;
}
/**
* Divide vector by a scalar and assign the quotient.
* @since 1.0
*/
Vector& operator/=(float scalar) {
x /= scalar;
y /= scalar;
z /= scalar;
return *this;
}
/**
* Returns a string containing this vector in a human readable format: (x, y, z).
* @since 1.0
*/
std::string toString() const {
std::stringstream result;
result << "(" << x << ", " << y << ", " << z << ")";
return result.str();
}
/**
* Writes the vector to the output stream using a human readable format: (x, y, z).
* @since 1.0
*/
friend std::ostream& operator<<(std::ostream& out, const Vector& vector) {
return out << vector.toString();
}
/**
* Compare Vector equality component-wise.
*
* \include Vector_Equals.txt
* @since 1.0
*/
bool operator==(const Vector& other) const {
return x == other.x && y == other.y && z == other.z;
}
/**
* Compare Vector inequality component-wise.
*
* \include Vector_NotEqual.txt
* @since 1.0
*/
bool operator!=(const Vector& other) const {
return x != other.x || y != other.y || z != other.z;
}
/**
* Returns true if all of the vector's components are finite. If any
* component is NaN or infinite, then this returns false.
*
* \include Vector_IsValid.txt
* @since 1.0
*/
bool isValid() const {
return (x <= FLT_MAX && x >= -FLT_MAX) &&
(y <= FLT_MAX && y >= -FLT_MAX) &&
(z <= FLT_MAX && z >= -FLT_MAX);
}
/**
* Index vector components numerically.
* Index 0 is x, index 1 is y, and index 2 is z.
* @returns The x, y, or z component of this Vector, if the specified index
* value is at least 0 and at most 2; otherwise, returns zero.
*
* \include Vector_Index.txt
* @since 1.0
*/
float operator[](unsigned int index) const {
return index < 3 ? (&x)[index] : 0.0f;
}
/**
* Cast the vector to a float array.
*
* \include Vector_ToFloatPointer.txt
* @since 1.0
*/
const float* toFloatPointer() const {
return &x; /* Note: Assumes x, y, z are aligned in memory. */
}
/**
* Convert a Leap::Vector to another 3-component Vector type.
*
* The specified type must define a constructor that takes the x, y, and z
* components as separate parameters.
* @since 1.0
*/
template<typename Vector3Type>
const Vector3Type toVector3() const {
return Vector3Type(x, y, z);
}
/**
* Convert a Leap::Vector to another 4-component Vector type.
*
* The specified type must define a constructor that takes the x, y, z, and w
* components as separate parameters. (The homogeneous coordinate, w, is set
* to zero by default, but you should typically set it to one for vectors
* representing a position.)
* @since 1.0
*/
template<typename Vector4Type>
const Vector4Type toVector4(float w=0.0f) const {
return Vector4Type(x, y, z, w);
}
/**
* The horizontal component.
* @since 1.0
*/
float x;
/**
* The vertical component.
* @since 1.0
*/
float y;
/**
* The depth component.
* @since 1.0
*/
float z;
};
/**
* The FloatArray struct is used to allow the returning of native float arrays
* without requiring dynamic memory allocation. It represents a matrix
* with a size up to 4x4.
* @since 1.0
*/
struct FloatArray {
/**
* Access the elements of the float array exactly like a native array.
* @since 1.0
*/
float& operator[] (unsigned int index) {
return m_array[index];
}
/**
* Use the Float Array anywhere a float pointer can be used.
* @since 1.0
*/
operator float* () {
return m_array;
}
/**
* Use the Float Array anywhere a const float pointer can be used.
* @since 1.0
*/
operator const float* () const {
return m_array;
}
/**
* An array containing up to 16 entries of the matrix.
* @since 1.0
*/
float m_array[16];
};
/**
* The Matrix struct represents a transformation matrix.
*
* To use this struct to transform a Vector, construct a matrix containing the
* desired transformation and then use the Matrix::transformPoint() or
* Matrix::transformDirection() functions to apply the transform.
*
* Transforms can be combined by multiplying two or more transform matrices using
* the * operator.
* @since 1.0
*/
struct Matrix
{
/**
* Constructs an identity transformation matrix.
*
* \include Matrix_Matrix.txt
*
* @since 1.0
*/
Matrix() :
xBasis(1, 0, 0),
yBasis(0, 1, 0),
zBasis(0, 0, 1),
origin(0, 0, 0) {
}
/**
* Constructs a copy of the specified Matrix object.
*
* \include Matrix_Matrix_copy.txt
*
* @since 1.0
*/
Matrix(const Matrix& other) :
xBasis(other.xBasis),
yBasis(other.yBasis),
zBasis(other.zBasis),
origin(other.origin) {
}
/**
* Constructs a transformation matrix from the specified basis vectors.
*
* \include Matrix_Matrix_basis.txt
*
* @param _xBasis A Vector specifying rotation and scale factors for the x-axis.
* @param _yBasis A Vector specifying rotation and scale factors for the y-axis.
* @param _zBasis A Vector specifying rotation and scale factors for the z-axis.
* @since 1.0
*/
Matrix(const Vector& _xBasis, const Vector& _yBasis, const Vector& _zBasis) :
xBasis(_xBasis),
yBasis(_yBasis),
zBasis(_zBasis),
origin(0, 0, 0) {
}
/**
* Constructs a transformation matrix from the specified basis and translation vectors.
*
* \include Matrix_Matrix_basis_origin.txt
*
* @param _xBasis A Vector specifying rotation and scale factors for the x-axis.
* @param _yBasis A Vector specifying rotation and scale factors for the y-axis.
* @param _zBasis A Vector specifying rotation and scale factors for the z-axis.
* @param _origin A Vector specifying translation factors on all three axes.
* @since 1.0
*/
Matrix(const Vector& _xBasis, const Vector& _yBasis, const Vector& _zBasis, const Vector& _origin) :
xBasis(_xBasis),
yBasis(_yBasis),
zBasis(_zBasis),
origin(_origin) {
}
/**
* Constructs a transformation matrix specifying a rotation around the specified vector.
*
* \include Matrix_Matrix_rotation.txt
*
* @param axis A Vector specifying the axis of rotation.
* @param angleRadians The amount of rotation in radians.
* @since 1.0
*/
Matrix(const Vector& axis, float angleRadians) :
origin(0, 0, 0) {
setRotation(axis, angleRadians);
}
/**
* Constructs a transformation matrix specifying a rotation around the specified vector
* and a translation by the specified vector.
*
* \include Matrix_Matrix_rotation_translation.txt
*
* @param axis A Vector specifying the axis of rotation.
* @param angleRadians The angle of rotation in radians.
* @param translation A Vector representing the translation part of the transform.
* @since 1.0
*/
Matrix(const Vector& axis, float angleRadians, const Vector& translation)
: origin(translation) {
setRotation(axis, angleRadians);
}
/**
* Returns the identity matrix specifying no translation, rotation, and scale.
*
* \include Matrix_identity.txt
*
* @returns The identity matrix.
* @since 1.0
*/
static const Matrix& identity() {
static Matrix s_identity;
return s_identity;
}
/**
* Sets this transformation matrix to represent a rotation around the specified vector.
*
* \include Matrix_setRotation.txt
*
* This function erases any previous rotation and scale transforms applied
* to this matrix, but does not affect translation.
*
* @param axis A Vector specifying the axis of rotation.
* @param angleRadians The amount of rotation in radians.
* @since 1.0
*/
void setRotation(const Vector& axis, float angleRadians) {
const Vector n = axis.normalized();
const float s = std::sin(angleRadians);
const float c = std::cos(angleRadians);
const float C = (1-c);
xBasis = Vector(n[0]*n[0]*C + c, n[0]*n[1]*C - n[2]*s, n[0]*n[2]*C + n[1]*s);
yBasis = Vector(n[1]*n[0]*C + n[2]*s, n[1]*n[1]*C + c, n[1]*n[2]*C - n[0]*s);
zBasis = Vector(n[2]*n[0]*C - n[1]*s, n[2]*n[1]*C + n[0]*s, n[2]*n[2]*C + c );
}
/**
* Transforms a vector with this matrix by transforming its rotation,
* scale, and translation.
*
* \include Matrix_transformPoint.txt
*
* Translation is applied after rotation and scale.
*
* @param in The Vector to transform.
* @returns A new Vector representing the transformed original.
* @since 1.0
*/
Vector transformPoint(const Vector& in) const {
return xBasis*in.x + yBasis*in.y + zBasis*in.z + origin;
}
/**
* Transforms a vector with this matrix by transforming its rotation and
* scale only.
*
* \include Matrix_transformDirection.txt
*
* @param in The Vector to transform.
* @returns A new Vector representing the transformed original.
* @since 1.0
*/
Vector transformDirection(const Vector& in) const {
return xBasis*in.x + yBasis*in.y + zBasis*in.z;
}
/**
* Performs a matrix inverse if the matrix consists entirely of rigid
* transformations (translations and rotations). If the matrix is not rigid,
* this operation will not represent an inverse.
*
* \include Matrix_rigidInverse.txt
*
* Note that all matrices that are directly returned by the API are rigid.
*
* @returns The rigid inverse of the matrix.
* @since 1.0
*/
Matrix rigidInverse() const {
Matrix rotInverse = Matrix(Vector(xBasis[0], yBasis[0], zBasis[0]),
Vector(xBasis[1], yBasis[1], zBasis[1]),
Vector(xBasis[2], yBasis[2], zBasis[2]));
rotInverse.origin = rotInverse.transformDirection( -origin );
return rotInverse;
}
/**
* Multiply transform matrices.
*
* Combines two transformations into a single equivalent transformation.
*
* \include Matrix_operator_times.txt
*
* @param other A Matrix to multiply on the right hand side.
* @returns A new Matrix representing the transformation equivalent to
* applying the other transformation followed by this transformation.
* @since 1.0
*/
Matrix operator*(const Matrix& other) const {
return Matrix(transformDirection(other.xBasis),
transformDirection(other.yBasis),
transformDirection(other.zBasis),
transformPoint(other.origin));
}
/**
* Multiply transform matrices and assign the product.
*
* \include Matrix_operator_times_equal.txt
*
* @since 1.0
*/
Matrix& operator*=(const Matrix& other) {
return (*this) = (*this) * other;
}
/**
* Compare Matrix equality component-wise.
*
* \include Matrix_operator_equals.txt
*
* @since 1.0
*/
bool operator==(const Matrix& other) const {
return xBasis == other.xBasis &&
yBasis == other.yBasis &&
zBasis == other.zBasis &&
origin == other.origin;
}
/**
* Compare Matrix inequality component-wise.
*
* \include Matrix_operator_not_equals.txt
*
* @since 1.0
*/
bool operator!=(const Matrix& other) const {
return xBasis != other.xBasis ||
yBasis != other.yBasis ||
zBasis != other.zBasis ||
origin != other.origin;
}
/**
* Convert a Leap::Matrix object to another 3x3 matrix type.
*
* The new type must define a constructor function that takes each matrix
* element as a parameter in row-major order.
*
* Translation factors are discarded.
* @since 1.0
*/
template<typename Matrix3x3Type>
const Matrix3x3Type toMatrix3x3() const {
return Matrix3x3Type(xBasis.x, xBasis.y, xBasis.z,
yBasis.x, yBasis.y, yBasis.z,
zBasis.x, zBasis.y, zBasis.z);
}
/**
* Convert a Leap::Matrix object to another 4x4 matrix type.
*
* The new type must define a constructor function that takes each matrix
* element as a parameter in row-major order.
* @since 1.0
*/
template<typename Matrix4x4Type>
const Matrix4x4Type toMatrix4x4() const {
return Matrix4x4Type(xBasis.x, xBasis.y, xBasis.z, 0.0f,
yBasis.x, yBasis.y, yBasis.z, 0.0f,
zBasis.x, zBasis.y, zBasis.z, 0.0f,
origin.x, origin.y, origin.z, 1.0f);
}
/**
* Writes the 3x3 Matrix object to a 9 element row-major float or
* double array.
*
* Translation factors are discarded.
*
* Returns a pointer to the same data.
* @since 1.0
*/
template<typename T>
T* toArray3x3(T* output) const {
output[0] = xBasis.x; output[1] = xBasis.y; output[2] = xBasis.z;
output[3] = yBasis.x; output[4] = yBasis.y; output[5] = yBasis.z;
output[6] = zBasis.x; output[7] = zBasis.y; output[8] = zBasis.z;
return output;
}
/**
* Convert a 3x3 Matrix object to a 9 element row-major float array.
*
* Translation factors are discarded.
*
* \include Matrix_toArray3x3.txt
*
* Returns a FloatArray struct to avoid dynamic memory allocation.
* @since 1.0
*/
FloatArray toArray3x3() const {
FloatArray output;
toArray3x3((float*)output);
return output;
}
/**
* Writes the 4x4 Matrix object to a 16 element row-major float
* or double array.
*
* Returns a pointer to the same data.
* @since 1.0
*/
template<typename T>
T* toArray4x4(T* output) const {
output[0] = xBasis.x; output[1] = xBasis.y; output[2] = xBasis.z; output[3] = 0.0f;
output[4] = yBasis.x; output[5] = yBasis.y; output[6] = yBasis.z; output[7] = 0.0f;
output[8] = zBasis.x; output[9] = zBasis.y; output[10] = zBasis.z; output[11] = 0.0f;
output[12] = origin.x; output[13] = origin.y; output[14] = origin.z; output[15] = 1.0f;
return output;
}
/**
* Convert a 4x4 Matrix object to a 16 element row-major float array.
*
* \include Matrix_toArray4x4.txt
*
* Returns a FloatArray struct to avoid dynamic memory allocation.
* @since 1.0
*/
FloatArray toArray4x4() const {
FloatArray output;
toArray4x4((float*)output);
return output;
}
/**
* Write the matrix to a string in a human readable format.
* @since 1.0
*/
std::string toString() const {
std::stringstream result;
result << "xBasis:" << xBasis.toString() << " yBasis:" << yBasis.toString()
<< " zBasis:" << zBasis.toString() << " origin:" << origin.toString();
return result.str();
}
/**
* Write the matrix to an output stream in a human readable format.
*
* \include Matrix_operator_stream.txt
*
* @since 1.0
*/
friend std::ostream& operator<<(std::ostream& out, const Matrix& matrix) {
return out << matrix.toString();
}
/**
* The basis vector for the x-axis.
*
* \include Matrix_xBasis.txt
*
* @since 1.0
*/
Vector xBasis;
/**
* The basis vector for the y-axis.
*
* \include Matrix_yBasis.txt
*
* @since 1.0
*/
Vector yBasis;
/**
* The basis vector for the z-axis.
*
* \include Matrix_zBasis.txt
*
* @since 1.0
*/
Vector zBasis;
/**
* The translation factors for all three axes.
*
* \include Matrix_origin.txt
*
* @since 1.0
*/
Vector origin;
};
}; // namespace Leap
#endif // __LeapMath_h__