'''
Modifed fromhttps://github.com/BNU-IVC/FastPoseGait/blob/main/fastposegait/modeling/losses/supconloss.py
'''
import torch.nn as nn
import torch
from .base import BaseLoss, gather_and_scale_wrapper
class SupConLoss_Re(BaseLoss):
def __init__(self, temperature=0.01):
super(SupConLoss_Re, self).__init__()
self.train_loss = SupConLoss(temperature=temperature)
@gather_and_scale_wrapper
def forward(self, features, labels=None, mask=None):
loss = self.train_loss(features, labels)
self.info.update({
'loss': loss.detach().clone()})
return loss, self.info
class SupConLoss_Lp(BaseLoss):
def __init__(self, temperature=0.01):
super(SupConLoss_Lp, self).__init__()
self.train_loss = SupConLoss(
temperature=temperature, base_temperature=temperature, reduce_zero=True, p=2)
@gather_and_scale_wrapper
def forward(self, features, labels=None, mask=None):
loss = self.train_loss(features.unsqueeze(1), labels)
self.info.update({
'loss': loss.detach().clone()})
return loss, self.info
class SupConLoss(nn.Module):
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
It also supports the unsupervised contrastive loss in SimCLR"""
def __init__(self, temperature=0.01, contrast_mode='all',
base_temperature=0.07, reduce_zero=False, p=None):
super(SupConLoss, self).__init__()
self.temperature = temperature
self.contrast_mode = contrast_mode
self.base_temperature = base_temperature
self.reduce_zero = reduce_zero
self.p = p
def forward(self, features, labels=None, mask=None):
"""Compute loss for model. If both `labels` and `mask` are None,
it degenerates to SimCLR unsupervised loss:
https://arxiv.org/pdf/2002.05709.pdf
Args:
features: hidden vector of shape [bsz, n_views, ...].
labels: ground truth of shape [bsz].
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
has the same class as sample i. Can be asymmetric.
Returns:
A loss scalar.
"""
device = (torch.device('cuda')
if features.is_cuda
else torch.device('cpu'))
if len(features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 3 dimensions are required')
if len(features.shape) > 3:
features = features.view(features.shape[0], features.shape[1], -1)
batch_size = features.shape[0]
if labels is not None and mask is not None:
raise ValueError('Cannot define both `labels` and `mask`')
elif labels is None and mask is None:
mask = torch.eye(batch_size, dtype=torch.float32).to(device)
elif labels is not None:
labels = labels.contiguous().view(-1, 1)
if labels.shape[0] != batch_size:
raise ValueError('Num of labels does not match num of features')
mask = torch.eq(labels, labels.T).float().to(device)
else:
mask = mask.float().to(device)
contrast_count = features.shape[1]
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
if self.contrast_mode == 'one':
anchor_feature = features[:, 0]
anchor_count = 1
elif self.contrast_mode == 'all':
anchor_feature = contrast_feature
anchor_count = contrast_count
else:
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
# compute distance mat
if self.p is None:
mat = torch.matmul(
anchor_feature, contrast_feature.T)
else:
anchor_feature = torch.nn.functional.normalize(
anchor_feature, p=self.p, dim=1)
contrast_feature = torch.nn.functional.normalize(
contrast_feature, p=self.p, dim=1)
mat = -torch.cdist(
anchor_feature, contrast_feature, p=self.p)
mat = mat/self.temperature
# for numerical stability
logits_max, _ = torch.max(mat, dim=1, keepdim=True)
logits = mat - logits_max.detach()
# tile mask
mask = mask.repeat(anchor_count, contrast_count)
# mask-out self-contrast cases
logits_mask = torch.scatter(
torch.ones_like(mask),
1,
torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
0
)
mask = mask * logits_mask
# compute log_prob
exp_logits = torch.exp(logits) * logits_mask
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
# compute mean of log-likelihood over positive
mean_log_prob_pos = (mask * log_prob).sum(1) / \
(mask.sum(1)+torch.finfo(mat.dtype).tiny)
# loss
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
if self.reduce_zero:
loss = loss[loss > 0]
return loss.mean()