[66de0a]: / opengait / evaluation / evaluator.py

Download this file

459 lines (395 with data), 20.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import os
from time import strftime, localtime
import numpy as np
from utils import get_msg_mgr, mkdir
from .metric import mean_iou, cuda_dist, compute_ACC_mAP, evaluate_rank, evaluate_many
from .re_rank import re_ranking
from sklearn.metrics import confusion_matrix, accuracy_score
def de_diag(acc, each_angle=False):
# Exclude identical-view cases
dividend = acc.shape[1] - 1.
result = np.sum(acc - np.diag(np.diag(acc)), 1) / dividend
if not each_angle:
result = np.mean(result)
return result
def cross_view_gallery_evaluation(feature, label, seq_type, view, dataset, metric):
'''More details can be found: More details can be found in
[A Comprehensive Study on the Evaluation of Silhouette-based Gait Recognition](https://ieeexplore.ieee.org/document/9928336).
'''
probe_seq_dict = {'CASIA-B': {'NM': ['nm-01'], 'BG': ['bg-01'], 'CL': ['cl-01']},
'OUMVLP': {'NM': ['00']}}
gallery_seq_dict = {'CASIA-B': ['nm-02', 'bg-02', 'cl-02'],
'OUMVLP': ['01']}
msg_mgr = get_msg_mgr()
acc = {}
mean_ap = {}
view_list = sorted(np.unique(view))
for (type_, probe_seq) in probe_seq_dict[dataset].items():
acc[type_] = np.zeros(len(view_list)) - 1.
mean_ap[type_] = np.zeros(len(view_list)) - 1.
for (v1, probe_view) in enumerate(view_list):
pseq_mask = np.isin(seq_type, probe_seq) & np.isin(
view, probe_view)
probe_x = feature[pseq_mask, :]
probe_y = label[pseq_mask]
gseq_mask = np.isin(seq_type, gallery_seq_dict[dataset])
gallery_y = label[gseq_mask]
gallery_x = feature[gseq_mask, :]
dist = cuda_dist(probe_x, gallery_x, metric)
eval_results = compute_ACC_mAP(
dist.cpu().numpy(), probe_y, gallery_y, view[pseq_mask], view[gseq_mask])
acc[type_][v1] = np.round(eval_results[0] * 100, 2)
mean_ap[type_][v1] = np.round(eval_results[1] * 100, 2)
result_dict = {}
msg_mgr.log_info(
'===Cross View Gallery Evaluation (Excluded identical-view cases)===')
out_acc_str = "========= Rank@1 Acc =========\n"
out_map_str = "============= mAP ============\n"
for type_ in probe_seq_dict[dataset].keys():
avg_acc = np.mean(acc[type_])
avg_map = np.mean(mean_ap[type_])
result_dict[f'scalar/test_accuracy/{type_}-Rank@1'] = avg_acc
result_dict[f'scalar/test_accuracy/{type_}-mAP'] = avg_map
out_acc_str += f"{type_}:\t{acc[type_]}, mean: {avg_acc:.2f}%\n"
out_map_str += f"{type_}:\t{mean_ap[type_]}, mean: {avg_map:.2f}%\n"
# msg_mgr.log_info(f'========= Rank@1 Acc =========')
msg_mgr.log_info(f'{out_acc_str}')
# msg_mgr.log_info(f'========= mAP =========')
msg_mgr.log_info(f'{out_map_str}')
return result_dict
# Modified From https://github.com/AbnerHqC/GaitSet/blob/master/model/utils/evaluator.py
def single_view_gallery_evaluation(feature, label, seq_type, view, dataset, metric):
probe_seq_dict = {'CASIA-B': {'NM': ['nm-05', 'nm-06'], 'BG': ['bg-01', 'bg-02'], 'CL': ['cl-01', 'cl-02']},
'OUMVLP': {'NM': ['00']},
'CASIA-E': {'NM': ['H-scene2-nm-1', 'H-scene2-nm-2', 'L-scene2-nm-1', 'L-scene2-nm-2', 'H-scene3-nm-1', 'H-scene3-nm-2', 'L-scene3-nm-1', 'L-scene3-nm-2', 'H-scene3_s-nm-1', 'H-scene3_s-nm-2', 'L-scene3_s-nm-1', 'L-scene3_s-nm-2', ],
'BG': ['H-scene2-bg-1', 'H-scene2-bg-2', 'L-scene2-bg-1', 'L-scene2-bg-2', 'H-scene3-bg-1', 'H-scene3-bg-2', 'L-scene3-bg-1', 'L-scene3-bg-2', 'H-scene3_s-bg-1', 'H-scene3_s-bg-2', 'L-scene3_s-bg-1', 'L-scene3_s-bg-2'],
'CL': ['H-scene2-cl-1', 'H-scene2-cl-2', 'L-scene2-cl-1', 'L-scene2-cl-2', 'H-scene3-cl-1', 'H-scene3-cl-2', 'L-scene3-cl-1', 'L-scene3-cl-2', 'H-scene3_s-cl-1', 'H-scene3_s-cl-2', 'L-scene3_s-cl-1', 'L-scene3_s-cl-2']
},
'SUSTech1K': {'Normal': ['01-nm'], 'Bag': ['bg'], 'Clothing': ['cl'], 'Carrying':['cr'], 'Umberalla': ['ub'], 'Uniform': ['uf'], 'Occlusion': ['oc'],'Night': ['nt'], 'Overall': ['01','02','03','04']}
}
gallery_seq_dict = {'CASIA-B': ['nm-01', 'nm-02', 'nm-03', 'nm-04'],
'OUMVLP': ['01'],
'CASIA-E': ['H-scene1-nm-1', 'H-scene1-nm-2', 'L-scene1-nm-1', 'L-scene1-nm-2'],
'SUSTech1K': ['00-nm'],}
msg_mgr = get_msg_mgr()
acc = {}
view_list = sorted(np.unique(view))
num_rank = 1
if dataset == 'CASIA-E':
view_list.remove("270")
if dataset == 'SUSTech1K':
num_rank = 5
view_num = len(view_list)
for (type_, probe_seq) in probe_seq_dict[dataset].items():
acc[type_] = np.zeros((view_num, view_num, num_rank)) - 1.
for (v1, probe_view) in enumerate(view_list):
pseq_mask = np.isin(seq_type, probe_seq) & np.isin(
view, probe_view)
pseq_mask = pseq_mask if 'SUSTech1K' not in dataset else np.any(np.asarray(
[np.char.find(seq_type, probe)>=0 for probe in probe_seq]), axis=0
) & np.isin(view, probe_view) # For SUSTech1K only
probe_x = feature[pseq_mask, :]
probe_y = label[pseq_mask]
for (v2, gallery_view) in enumerate(view_list):
gseq_mask = np.isin(seq_type, gallery_seq_dict[dataset]) & np.isin(
view, [gallery_view])
gseq_mask = gseq_mask if 'SUSTech1K' not in dataset else np.any(np.asarray(
[np.char.find(seq_type, gallery)>=0 for gallery in gallery_seq_dict[dataset]]), axis=0
) & np.isin(view, [gallery_view]) # For SUSTech1K only
gallery_y = label[gseq_mask]
gallery_x = feature[gseq_mask, :]
dist = cuda_dist(probe_x, gallery_x, metric)
idx = dist.topk(num_rank, largest=False)[1].cpu().numpy()
acc[type_][v1, v2, :] = np.round(np.sum(np.cumsum(np.reshape(probe_y, [-1, 1]) == gallery_y[idx[:, 0:num_rank]], 1) > 0,
0) * 100 / dist.shape[0], 2)
result_dict = {}
msg_mgr.log_info('===Rank-1 (Exclude identical-view cases)===')
out_str = ""
for rank in range(num_rank):
out_str = ""
for type_ in probe_seq_dict[dataset].keys():
sub_acc = de_diag(acc[type_][:,:,rank], each_angle=True)
if rank == 0:
msg_mgr.log_info(f'{type_}@R{rank+1}: {sub_acc}')
result_dict[f'scalar/test_accuracy/{type_}@R{rank+1}'] = np.mean(sub_acc)
out_str += f"{type_}@R{rank+1}: {np.mean(sub_acc):.2f}%\t"
msg_mgr.log_info(out_str)
return result_dict
def evaluate_indoor_dataset(data, dataset, metric='euc', cross_view_gallery=False):
feature, label, seq_type, view = data['embeddings'], data['labels'], data['types'], data['views']
label = np.array(label)
view = np.array(view)
if dataset not in ('CASIA-B', 'OUMVLP', 'CASIA-E', 'SUSTech1K'):
raise KeyError("DataSet %s hasn't been supported !" % dataset)
if cross_view_gallery:
return cross_view_gallery_evaluation(
feature, label, seq_type, view, dataset, metric)
else:
return single_view_gallery_evaluation(
feature, label, seq_type, view, dataset, metric)
def evaluate_real_scene(data, dataset, metric='euc'):
msg_mgr = get_msg_mgr()
feature, label, seq_type = data['embeddings'], data['labels'], data['types']
label = np.array(label)
gallery_seq_type = {'0001-1000': ['1', '2'],
"HID2021": ['0'], '0001-1000-test': ['0'],
'GREW': ['01'], 'TTG-200': ['1']}
probe_seq_type = {'0001-1000': ['3', '4', '5', '6'],
"HID2021": ['1'], '0001-1000-test': ['1'],
'GREW': ['02'], 'TTG-200': ['2', '3', '4', '5', '6']}
num_rank = 20
acc = np.zeros([num_rank]) - 1.
gseq_mask = np.isin(seq_type, gallery_seq_type[dataset])
gallery_x = feature[gseq_mask, :]
gallery_y = label[gseq_mask]
pseq_mask = np.isin(seq_type, probe_seq_type[dataset])
probe_x = feature[pseq_mask, :]
probe_y = label[pseq_mask]
dist = cuda_dist(probe_x, gallery_x, metric)
idx = dist.topk(num_rank, largest=False)[1].cpu().numpy()
acc = np.round(np.sum(np.cumsum(np.reshape(probe_y, [-1, 1]) == gallery_y[idx[:, 0:num_rank]], 1) > 0,
0) * 100 / dist.shape[0], 2)
msg_mgr.log_info('==Rank-1==')
msg_mgr.log_info('%.3f' % (np.mean(acc[0])))
msg_mgr.log_info('==Rank-5==')
msg_mgr.log_info('%.3f' % (np.mean(acc[4])))
msg_mgr.log_info('==Rank-10==')
msg_mgr.log_info('%.3f' % (np.mean(acc[9])))
msg_mgr.log_info('==Rank-20==')
msg_mgr.log_info('%.3f' % (np.mean(acc[19])))
return {"scalar/test_accuracy/Rank-1": np.mean(acc[0]), "scalar/test_accuracy/Rank-5": np.mean(acc[4])}
def GREW_submission(data, dataset, metric='euc'):
get_msg_mgr().log_info("Evaluating GREW")
feature, label, seq_type, view = data['embeddings'], data['labels'], data['types'], data['views']
label = np.array(label)
view = np.array(view)
gallery_seq_type = {'GREW': ['01', '02']}
probe_seq_type = {'GREW': ['03']}
gseq_mask = np.isin(seq_type, gallery_seq_type[dataset])
gallery_x = feature[gseq_mask, :]
gallery_y = label[gseq_mask]
pseq_mask = np.isin(seq_type, probe_seq_type[dataset])
probe_x = feature[pseq_mask, :]
probe_y = view[pseq_mask]
num_rank = 20
dist = cuda_dist(probe_x, gallery_x, metric)
idx = dist.topk(num_rank, largest=False)[1].cpu().numpy()
save_path = os.path.join(
"GREW_result/"+strftime('%Y-%m%d-%H%M%S', localtime())+".csv")
mkdir("GREW_result")
with open(save_path, "w") as f:
f.write("videoId,rank1,rank2,rank3,rank4,rank5,rank6,rank7,rank8,rank9,rank10,rank11,rank12,rank13,rank14,rank15,rank16,rank17,rank18,rank19,rank20\n")
for i in range(len(idx)):
r_format = [int(idx) for idx in gallery_y[idx[i, 0:num_rank]]]
output_row = '{}'+',{}'*num_rank+'\n'
f.write(output_row.format(probe_y[i], *r_format))
print("GREW result saved to {}/{}".format(os.getcwd(), save_path))
return
def HID_submission(data, dataset, rerank=True, metric='euc'):
msg_mgr = get_msg_mgr()
msg_mgr.log_info("Evaluating HID")
feature, label, seq_type = data['embeddings'], data['labels'], data['views']
label = np.array(label)
seq_type = np.array(seq_type)
probe_mask = (label == "probe")
gallery_mask = (label != "probe")
gallery_x = feature[gallery_mask, :]
gallery_y = label[gallery_mask]
probe_x = feature[probe_mask, :]
probe_y = seq_type[probe_mask]
if rerank:
feat = np.concatenate([probe_x, gallery_x])
dist = cuda_dist(feat, feat, metric).cpu().numpy()
msg_mgr.log_info("Starting Re-ranking")
re_rank = re_ranking(
dist, probe_x.shape[0], k1=6, k2=6, lambda_value=0.3)
idx = np.argsort(re_rank, axis=1)
else:
dist = cuda_dist(probe_x, gallery_x, metric)
idx = dist.cpu().sort(1)[1].numpy()
save_path = os.path.join(
"HID_result/"+strftime('%Y-%m%d-%H%M%S', localtime())+".csv")
mkdir("HID_result")
with open(save_path, "w") as f:
f.write("videoID,label\n")
for i in range(len(idx)):
f.write("{},{}\n".format(probe_y[i], gallery_y[idx[i, 0]]))
print("HID result saved to {}/{}".format(os.getcwd(), save_path))
return
def evaluate_segmentation(data, dataset):
labels = data['mask']
pred = data['pred']
miou = mean_iou(pred, labels)
get_msg_mgr().log_info('mIOU: %.3f' % (miou.mean()))
return {"scalar/test_accuracy/mIOU": miou}
def evaluate_Gait3D(data, dataset, metric='euc'):
msg_mgr = get_msg_mgr()
features, labels, cams, time_seqs = data['embeddings'], data['labels'], data['types'], data['views']
import json
probe_sets = json.load(
open('./datasets/Gait3D/Gait3D.json', 'rb'))['PROBE_SET']
probe_mask = []
for id, ty, sq in zip(labels, cams, time_seqs):
if '-'.join([id, ty, sq]) in probe_sets:
probe_mask.append(True)
else:
probe_mask.append(False)
probe_mask = np.array(probe_mask)
# probe_features = features[:probe_num]
probe_features = features[probe_mask]
# gallery_features = features[probe_num:]
gallery_features = features[~probe_mask]
# probe_lbls = np.asarray(labels[:probe_num])
# gallery_lbls = np.asarray(labels[probe_num:])
probe_lbls = np.asarray(labels)[probe_mask]
gallery_lbls = np.asarray(labels)[~probe_mask]
results = {}
msg_mgr.log_info(f"The test metric you choose is {metric}.")
dist = cuda_dist(probe_features, gallery_features, metric).cpu().numpy()
cmc, all_AP, all_INP = evaluate_rank(dist, probe_lbls, gallery_lbls)
mAP = np.mean(all_AP)
mINP = np.mean(all_INP)
for r in [1, 5, 10]:
results['scalar/test_accuracy/Rank-{}'.format(r)] = cmc[r - 1] * 100
results['scalar/test_accuracy/mAP'] = mAP * 100
results['scalar/test_accuracy/mINP'] = mINP * 100
# print_csv_format(dataset_name, results)
msg_mgr.log_info(results)
return results
def evaluate_CCPG(data, dataset, metric='euc'):
msg_mgr = get_msg_mgr()
feature, label, seq_type, view = data['embeddings'], data['labels'], data['types'], data['views']
label = np.array(label)
for i in range(len(view)):
view[i] = view[i].split("_")[0]
view_np = np.array(view)
view_list = list(set(view))
view_list.sort()
view_num = len(view_list)
probe_seq_dict = {'CCPG': [["U0_D0_BG", "U0_D0"], [
"U3_D3"], ["U1_D0"], ["U0_D0_BG"]]}
gallery_seq_dict = {
'CCPG': [["U1_D1", "U2_D2", "U3_D3"], ["U0_D3"], ["U1_D1"], ["U0_D0"]]}
if dataset not in (probe_seq_dict or gallery_seq_dict):
raise KeyError("DataSet %s hasn't been supported !" % dataset)
num_rank = 5
acc = np.zeros([len(probe_seq_dict[dataset]),
view_num, view_num, num_rank]) - 1.
ap_save = []
cmc_save = []
minp = []
for (p, probe_seq) in enumerate(probe_seq_dict[dataset]):
# for gallery_seq in gallery_seq_dict[dataset]:
gallery_seq = gallery_seq_dict[dataset][p]
gseq_mask = np.isin(seq_type, gallery_seq)
gallery_x = feature[gseq_mask, :]
# print("gallery_x", gallery_x.shape)
gallery_y = label[gseq_mask]
gallery_view = view_np[gseq_mask]
pseq_mask = np.isin(seq_type, probe_seq)
probe_x = feature[pseq_mask, :]
probe_y = label[pseq_mask]
probe_view = view_np[pseq_mask]
msg_mgr.log_info(
("gallery length", len(gallery_y), gallery_seq, "probe length", len(probe_y), probe_seq))
distmat = cuda_dist(probe_x, gallery_x, metric).cpu().numpy()
# cmc, ap = evaluate(distmat, probe_y, gallery_y, probe_view, gallery_view)
cmc, ap, inp = evaluate_many(
distmat, probe_y, gallery_y, probe_view, gallery_view)
ap_save.append(ap)
cmc_save.append(cmc[0])
minp.append(inp)
# print(ap_save, cmc_save)
msg_mgr.log_info(
'===Rank-1 (Exclude identical-view cases for Person Re-Identification)===')
msg_mgr.log_info('CL: %.3f,\tUP: %.3f,\tDN: %.3f,\tBG: %.3f' % (
cmc_save[0]*100, cmc_save[1]*100, cmc_save[2]*100, cmc_save[3]*100))
msg_mgr.log_info(
'===mAP (Exclude identical-view cases for Person Re-Identification)===')
msg_mgr.log_info('CL: %.3f,\tUP: %.3f,\tDN: %.3f,\tBG: %.3f' % (
ap_save[0]*100, ap_save[1]*100, ap_save[2]*100, ap_save[3]*100))
msg_mgr.log_info(
'===mINP (Exclude identical-view cases for Person Re-Identification)===')
msg_mgr.log_info('CL: %.3f,\tUP: %.3f,\tDN: %.3f,\tBG: %.3f' %
(minp[0]*100, minp[1]*100, minp[2]*100, minp[3]*100))
for (p, probe_seq) in enumerate(probe_seq_dict[dataset]):
# for gallery_seq in gallery_seq_dict[dataset]:
gallery_seq = gallery_seq_dict[dataset][p]
for (v1, probe_view) in enumerate(view_list):
for (v2, gallery_view) in enumerate(view_list):
gseq_mask = np.isin(seq_type, gallery_seq) & np.isin(
view, [gallery_view])
gallery_x = feature[gseq_mask, :]
gallery_y = label[gseq_mask]
pseq_mask = np.isin(seq_type, probe_seq) & np.isin(
view, [probe_view])
probe_x = feature[pseq_mask, :]
probe_y = label[pseq_mask]
dist = cuda_dist(probe_x, gallery_x, metric)
idx = dist.sort(1)[1].cpu().numpy()
# print(p, v1, v2, "\n")
acc[p, v1, v2, :] = np.round(
np.sum(np.cumsum(np.reshape(probe_y, [-1, 1]) == gallery_y[idx[:, 0:num_rank]], 1) > 0,
0) * 100 / dist.shape[0], 2)
result_dict = {}
for i in range(1):
msg_mgr.log_info(
'===Rank-%d (Include identical-view cases)===' % (i + 1))
msg_mgr.log_info('CL: %.3f,\tUP: %.3f,\tDN: %.3f,\tBG: %.3f' % (
np.mean(acc[0, :, :, i]),
np.mean(acc[1, :, :, i]),
np.mean(acc[2, :, :, i]),
np.mean(acc[3, :, :, i])))
for i in range(1):
msg_mgr.log_info(
'===Rank-%d (Exclude identical-view cases)===' % (i + 1))
msg_mgr.log_info('CL: %.3f,\tUP: %.3f,\tDN: %.3f,\tBG: %.3f' % (
de_diag(acc[0, :, :, i]),
de_diag(acc[1, :, :, i]),
de_diag(acc[2, :, :, i]),
de_diag(acc[3, :, :, i])))
result_dict["scalar/test_accuracy/CL"] = acc[0, :, :, i]
result_dict["scalar/test_accuracy/UP"] = acc[1, :, :, i]
result_dict["scalar/test_accuracy/DN"] = acc[2, :, :, i]
result_dict["scalar/test_accuracy/BG"] = acc[3, :, :, i]
np.set_printoptions(precision=2, floatmode='fixed')
for i in range(1):
msg_mgr.log_info(
'===Rank-%d of each angle (Exclude identical-view cases)===' % (i + 1))
msg_mgr.log_info('CL: {}'.format(de_diag(acc[0, :, :, i], True)))
msg_mgr.log_info('UP: {}'.format(de_diag(acc[1, :, :, i], True)))
msg_mgr.log_info('DN: {}'.format(de_diag(acc[2, :, :, i], True)))
msg_mgr.log_info('BG: {}'.format(de_diag(acc[3, :, :, i], True)))
return result_dict
def evaluate_scoliosis(data, dataset, metric='euc'):
msg_mgr = get_msg_mgr()
feature, label, class_id, view = data['embeddings'], data['labels'], data['types'], data['views']
label = np.array(label)
class_id = np.array(class_id)
# Update class_id with integer labels based on status
class_id_int = np.array([1 if status == 'positive' else 2 if status == 'neutral' else 0 for status in class_id])
print('class_id=', class_id_int)
features = np.array(feature)
c_id_int = np.argmax(features.mean(-1), axis=-1)
print('predicted_labels', c_id_int)
# Calculate sensitivity and specificity
cm = confusion_matrix(class_id_int, c_id_int, labels=[0, 1, 2])
FP = cm.sum(axis=0) - np.diag(cm)
FN = cm.sum(axis=1) - np.diag(cm)
TP = np.diag(cm)
TN = cm.sum() - (FP + FN + TP)
# Sensitivity, hit rate, recall, or true positive rate
TPR = TP / (TP + FN)
# Specificity or true negative rate
TNR = TN / (TN + FP)
accuracy = accuracy_score(class_id_int, c_id_int)
result_dict = {}
result_dict["scalar/test_accuracy/"] = accuracy
result_dict["scalar/test_sensitivity/"] = TPR
result_dict["scalar/test_specificity/"] = TNR
# Printing the sensitivity and specificity
for i, cls in enumerate(['Positive']):
print(f"{cls} Sensitivity (Recall): {TPR[i] * 100:.2f}%")
print(f"{cls} Specificity: {TNR[i] * 100:.2f}%")
print(f"Accuracy: {accuracy * 100:.2f}%")
return result_dict