import numpy as np
import random
import torchvision.transforms as T
import cv2
import math
from data import transform as base_transform
from utils import is_list, is_dict, get_valid_args
class NoOperation():
def __call__(self, x):
return x
class BaseSilTransform():
def __init__(self, divsor=255.0, img_shape=None):
self.divsor = divsor
self.img_shape = img_shape
def __call__(self, x):
if self.img_shape is not None:
s = x.shape[0]
_ = [s] + [*self.img_shape]
x = x.reshape(*_)
return x / self.divsor
class BaseParsingCuttingTransform():
def __init__(self, divsor=255.0, cutting=None):
self.divsor = divsor
self.cutting = cutting
def __call__(self, x):
if self.cutting is not None:
cutting = self.cutting
else:
cutting = int(x.shape[-1] // 64) * 10
if cutting != 0:
x = x[..., cutting:-cutting]
if x.max() == 255 or x.max() == 255.:
return x / self.divsor
else:
return x / 1.0
class BaseSilCuttingTransform():
def __init__(self, divsor=255.0, cutting=None):
self.divsor = divsor
self.cutting = cutting
def __call__(self, x):
if self.cutting is not None:
cutting = self.cutting
else:
cutting = int(x.shape[-1] // 64) * 10
if cutting != 0:
x = x[..., cutting:-cutting]
return x / self.divsor
class BaseRgbTransform():
def __init__(self, mean=None, std=None):
if mean is None:
mean = [0.485*255, 0.456*255, 0.406*255]
if std is None:
std = [0.229*255, 0.224*255, 0.225*255]
self.mean = np.array(mean).reshape((1, 3, 1, 1))
self.std = np.array(std).reshape((1, 3, 1, 1))
def __call__(self, x):
return (x - self.mean) / self.std
# **************** Data Agumentation ****************
class RandomHorizontalFlip(object):
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, seq):
if random.uniform(0, 1) >= self.prob:
return seq
else:
return seq[..., ::-1]
class RandomErasing(object):
def __init__(self, prob=0.5, sl=0.05, sh=0.2, r1=0.3, per_frame=False):
self.prob = prob
self.sl = sl
self.sh = sh
self.r1 = r1
self.per_frame = per_frame
def __call__(self, seq):
if not self.per_frame:
if random.uniform(0, 1) >= self.prob:
return seq
else:
for _ in range(100):
seq_size = seq.shape
area = seq_size[1] * seq_size[2]
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1 / self.r1)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < seq_size[2] and h < seq_size[1]:
x1 = random.randint(0, seq_size[1] - h)
y1 = random.randint(0, seq_size[2] - w)
seq[:, x1:x1+h, y1:y1+w] = 0.
return seq
return seq
else:
self.per_frame = False
frame_num = seq.shape[0]
ret = [self.__call__(seq[k][np.newaxis, ...])
for k in range(frame_num)]
self.per_frame = True
return np.concatenate(ret, 0)
class RandomRotate(object):
def __init__(self, prob=0.5, degree=10):
self.prob = prob
self.degree = degree
def __call__(self, seq):
if random.uniform(0, 1) >= self.prob:
return seq
else:
dh, dw = seq.shape[-2:]
# rotation
degree = random.uniform(-self.degree, self.degree)
M1 = cv2.getRotationMatrix2D((dh // 2, dw // 2), degree, 1)
# affine
if len(seq.shape) == 4:
seq = seq.transpose(0, 2, 3, 1)
seq = [cv2.warpAffine(_[0, ...], M1, (dw, dh))
for _ in np.split(seq, seq.shape[0], axis=0)]
seq = np.concatenate([np.array(_)[np.newaxis, ...]
for _ in seq], 0)
if len(seq.shape) == 4:
seq = seq.transpose(0, 3, 1, 2)
return seq
class RandomPerspective(object):
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, seq):
if random.uniform(0, 1) >= self.prob:
return seq
else:
h, w = seq.shape[-2:]
cutting = int(w // 44) * 10
x_left = list(range(0, cutting))
x_right = list(range(w - cutting, w))
TL = (random.choice(x_left), 0)
TR = (random.choice(x_right), 0)
BL = (random.choice(x_left), h)
BR = (random.choice(x_right), h)
srcPoints = np.float32([TL, TR, BR, BL])
canvasPoints = np.float32([[0, 0], [w, 0], [w, h], [0, h]])
perspectiveMatrix = cv2.getPerspectiveTransform(
np.array(srcPoints), np.array(canvasPoints))
if len(seq.shape) == 4:
seq = seq.transpose(0, 2, 3, 1)
seq = [cv2.warpPerspective(_[0, ...], perspectiveMatrix, (w, h))
for _ in np.split(seq, seq.shape[0], axis=0)]
seq = np.concatenate([np.array(_)[np.newaxis, ...]
for _ in seq], 0)
if len(seq.shape) == 4:
seq = seq.transpose(0, 3, 1, 2)
return seq
class RandomAffine(object):
def __init__(self, prob=0.5, degree=10):
self.prob = prob
self.degree = degree
def __call__(self, seq):
if random.uniform(0, 1) >= self.prob:
return seq
else:
dh, dw = seq.shape[-2:]
# rotation
max_shift = int(dh // 64 * 10)
shift_range = list(range(0, max_shift))
pts1 = np.float32([[random.choice(shift_range), random.choice(shift_range)], [
dh-random.choice(shift_range), random.choice(shift_range)], [random.choice(shift_range), dw-random.choice(shift_range)]])
pts2 = np.float32([[random.choice(shift_range), random.choice(shift_range)], [
dh-random.choice(shift_range), random.choice(shift_range)], [random.choice(shift_range), dw-random.choice(shift_range)]])
M1 = cv2.getAffineTransform(pts1, pts2)
# affine
if len(seq.shape) == 4:
seq = seq.transpose(0, 2, 3, 1)
seq = [cv2.warpAffine(_[0, ...], M1, (dw, dh))
for _ in np.split(seq, seq.shape[0], axis=0)]
seq = np.concatenate([np.array(_)[np.newaxis, ...]
for _ in seq], 0)
if len(seq.shape) == 4:
seq = seq.transpose(0, 3, 1, 2)
return seq
# ******************************************
def Compose(trf_cfg):
assert is_list(trf_cfg)
transform = T.Compose([get_transform(cfg) for cfg in trf_cfg])
return transform
def get_transform(trf_cfg=None):
if is_dict(trf_cfg):
transform = getattr(base_transform, trf_cfg['type'])
valid_trf_arg = get_valid_args(transform, trf_cfg, ['type'])
return transform(**valid_trf_arg)
if trf_cfg is None:
return lambda x: x
if is_list(trf_cfg):
transform = [get_transform(cfg) for cfg in trf_cfg]
return transform
raise "Error type for -Transform-Cfg-"
# **************** For GaitSSB ****************
# Fan, et al: Learning Gait Representation from Massive Unlabelled Walking Videos: A Benchmark, T-PAMI2023
class RandomPartDilate():
def __init__(self, prob=0.5, top_range=(12, 16), bot_range=(36, 40)):
self.prob = prob
self.top_range = top_range
self.bot_range = bot_range
self.modes_and_kernels = {
'RECT': [[5, 3], [5, 5], [3, 5]],
'CROSS': [[3, 3], [3, 5], [5, 3]],
'ELLIPSE': [[3, 3], [3, 5], [5, 3]]}
self.modes = list(self.modes_and_kernels.keys())
def __call__(self, seq):
'''
Using the image dialte and affine transformation to simulate the clorhing change cases.
Input:
seq: a sequence of silhouette frames, [s, h, w]
Output:
seq: a sequence of agumented frames, [s, h, w]
'''
if random.uniform(0, 1) >= self.prob:
return seq
else:
mode = random.choice(self.modes)
kernel_size = random.choice(self.modes_and_kernels[mode])
top = random.randint(self.top_range[0], self.top_range[1])
bot = random.randint(self.bot_range[0], self.bot_range[1])
seq = seq.transpose(1, 2, 0) # [s, h, w] -> [h, w, s]
_seq_ = seq.copy()
_seq_ = _seq_[top:bot, ...]
_seq_ = self.dilate(_seq_, kernel_size=kernel_size, mode=mode)
seq[top:bot, ...] = _seq_
seq = seq.transpose(2, 0, 1) # [h, w, s] -> [s, h, w]
return seq
def dilate(self, img, kernel_size=[3, 3], mode='RECT'):
'''
MORPH_RECT, MORPH_CROSS, ELLIPSE
Input:
img: [h, w]
Output:
img: [h, w]
'''
assert mode in ['RECT', 'CROSS', 'ELLIPSE']
kernel = cv2.getStructuringElement(getattr(cv2, 'MORPH_'+mode), kernel_size)
dst = cv2.dilate(img, kernel)
return dst
class RandomPartBlur():
def __init__(self, prob=0.5, top_range=(9, 20), bot_range=(29, 40), per_frame=False):
self.prob = prob
self.top_range = top_range
self.bot_range = bot_range
self.per_frame = per_frame
def __call__(self, seq):
'''
Input:
seq: a sequence of silhouette frames, [s, h, w]
Output:
seq: a sequence of agumented frames, [s, h, w]
'''
if not self.per_frame:
if random.uniform(0, 1) >= self.prob:
return seq
else:
top = random.randint(self.top_range[0], self.top_range[1])
bot = random.randint(self.bot_range[0], self.bot_range[1])
seq = seq.transpose(1, 2, 0) # [s, h, w] -> [h, w, s]
_seq_ = seq.copy()
_seq_ = _seq_[top:bot, ...]
_seq_ = cv2.GaussianBlur(_seq_, ksize=(3, 3), sigmaX=0)
_seq_ = (_seq_ > 0.2).astype(np.float)
seq[top:bot, ...] = _seq_
seq = seq.transpose(2, 0, 1) # [h, w, s] -> [s, h, w]
return seq
else:
self.per_frame = False
frame_num = seq.shape[0]
ret = [self.__call__(seq[k][np.newaxis, ...]) for k in range(frame_num)]
self.per_frame = True
return np.concatenate(ret, 0)
def DA4GaitSSB(
cutting = None,
ra_prob = 0.2,
rp_prob = 0.2,
rhf_prob = 0.5,
rpd_prob = 0.2,
rpb_prob = 0.2,
top_range = (9, 20),
bot_range = (39, 50),
):
transform = T.Compose([
RandomAffine(prob=ra_prob),
RandomPerspective(prob=rp_prob),
BaseSilCuttingTransform(cutting=cutting),
RandomHorizontalFlip(prob=rhf_prob),
RandomPartDilate(prob=rpd_prob, top_range=top_range, bot_range=bot_range),
RandomPartBlur(prob=rpb_prob, top_range=top_range, bot_range=bot_range),
])
return transform
# **************** For pose-based methods ****************
class RandomSelectSequence(object):
"""
Randomly select different subsequences
"""
def __init__(self, sequence_length=10):
self.sequence_length = sequence_length
def __call__(self, data):
try:
start = np.random.randint(0, data.shape[0] - self.sequence_length)
except ValueError:
raise ValueError("The sequence length of data is too short, which does not meet the requirements.")
end = start + self.sequence_length
return data[start:end]
class SelectSequenceCenter(object):
"""
Select center subsequence
"""
def __init__(self, sequence_length=10):
self.sequence_length = sequence_length
def __call__(self, data):
try:
start = int((data.shape[0]/2) - (self.sequence_length / 2))
except ValueError:
raise ValueError("The sequence length of data is too short, which does not meet the requirements.")
end = start + self.sequence_length
return data[start:end]
class MirrorPoses(object):
"""
Performing Mirror Operations
"""
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, data):
if np.random.random() <= self.prob:
center = np.mean(data[:, :, 0], axis=1, keepdims=True)
data[:, :, 0] = center - data[:, :, 0] + center
return data
class NormalizeEmpty(object):
"""
Normliza Empty Joint
"""
def __call__(self, data):
frames, joints = np.where(data[:, :, 0] == 0)
for frame, joint in zip(frames, joints):
center_of_gravity = np.mean(data[frame], axis=0)
data[frame, joint, 0] = center_of_gravity[0]
data[frame, joint, 1] = center_of_gravity[1]
data[frame, joint, 2] = 0
return data
class RandomMove(object):
"""
Move: add Random Movement to each joint
"""
def __init__(self,random_r =[4,1]):
self.random_r = random_r
def __call__(self, data):
noise = np.zeros(3)
noise[0] = np.random.uniform(-self.random_r[0], self.random_r[0])
noise[1] = np.random.uniform(-self.random_r[1], self.random_r[1])
data += np.tile(noise,(data.shape[0], data.shape[1], 1))
return data
class PointNoise(object):
"""
Add Gaussian noise to pose points
std: standard deviation
"""
def __init__(self, std=0.01):
self.std = std
def __call__(self, data):
noise = np.random.normal(0, self.std, data.shape).astype(np.float32)
return data + noise
class FlipSequence(object):
"""
Temporal Fliping
"""
def __init__(self, probability=0.5):
self.probability = probability
def __call__(self, data):
if np.random.random() <= self.probability:
return np.flip(data,axis=0).copy()
return data
class InversePosesPre(object):
'''
Left-right flip of skeletons
'''
def __init__(self, probability=0.5, joint_format='coco'):
self.probability = probability
if joint_format == 'coco':
self.invers_arr = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
elif joint_format in ['alphapose', 'openpose']:
self.invers_arr = [0, 1, 5, 6, 7, 2, 3, 4, 11, 12, 13, 8, 9, 10, 15, 14, 17, 16]
else:
raise ValueError("Invalid joint_format.")
def __call__(self, data):
for i in range(len(data)):
if np.random.random() <= self.probability:
data[i]=data[i,self.invers_arr,:]
return data
class JointNoise(object):
"""
Add Gaussian noise to joint
std: standard deviation
"""
def __init__(self, std=0.25):
self.std = std
def __call__(self, data):
# T, V, C
noise = np.hstack((
np.random.normal(0, self.std, (data.shape[1], 2)),
np.zeros((data.shape[1], 1))
)).astype(np.float32)
return data + np.repeat(noise[np.newaxis, ...], data.shape[0], axis=0)
class GaitTRMultiInput(object):
def __init__(self, joint_format='coco',):
if joint_format == 'coco':
self.connect_joint = np.array([5,0,0,1,2,0,0,5,6,7,8,5,6,11,12,13,14])
elif joint_format in ['alphapose', 'openpose']:
self.connect_joint = np.array([1,1,1,2,3,1,5,6,2,8,9,5,11,12,0,0,14,15])
else:
raise ValueError("Invalid joint_format.")
def __call__(self, data):
# (C, T, V) -> (I, C * 2, T, V)
data = np.transpose(data, (2, 0, 1))
data = data[:2, :, :]
C, T, V = data.shape
data_new = np.zeros((5, C, T, V))
# Joints
data_new[0, :C, :, :] = data
for i in range(V):
data_new[1, :, :, i] = data[:, :, i] - data[:, :, 0]
# Velocity
for i in range(T - 2):
data_new[2, :, i, :] = data[:, i + 1, :] - data[:, i, :]
data_new[3, :, i, :] = data[:, i + 2, :] - data[:, i, :]
# Bones
for i in range(len(self.connect_joint)):
data_new[4, :, :, i] = data[:, :, i] - data[:, :, self.connect_joint[i]]
I, C, T, V = data_new.shape
data_new = data_new.reshape(I*C, T, V)
# (C T V) -> (T V C)
data_new = np.transpose(data_new, (1, 2, 0))
return data_new
class GaitGraphMultiInput(object):
def __init__(self, center=0, joint_format='coco'):
self.center = center
if joint_format == 'coco':
self.connect_joint = np.array([5,0,0,1,2,0,0,5,6,7,8,5,6,11,12,13,14])
elif joint_format in ['alphapose', 'openpose']:
self.connect_joint = np.array([1,1,1,2,3,1,5,6,2,8,9,5,11,12,0,0,14,15])
else:
raise ValueError("Invalid joint_format.")
def __call__(self, data):
T, V, C = data.shape
x_new = np.zeros((T, V, 3, C + 2))
# Joints
x = data
x_new[:, :, 0, :C] = x
for i in range(V):
x_new[:, i, 0, C:] = x[:, i, :2] - x[:, self.center, :2]
# Velocity
for i in range(T - 2):
x_new[i, :, 1, :2] = x[i + 1, :, :2] - x[i, :, :2]
x_new[i, :, 1, 3:] = x[i + 2, :, :2] - x[i, :, :2]
x_new[:, :, 1, 3] = x[:, :, 2]
# Bones
for i in range(V):
x_new[:, i, 2, :2] = x[:, i, :2] - x[:, self.connect_joint[i], :2]
# Angles
bone_length = 0
for i in range(C - 1):
bone_length += np.power(x_new[:, :, 2, i], 2)
bone_length = np.sqrt(bone_length) + 0.0001
for i in range(C - 1):
x_new[:, :, 2, C+i] = np.arccos(x_new[:, :, 2, i] / bone_length)
x_new[:, :, 2, 3] = x[:, :, 2]
return x_new
class GaitGraph1Input(object):
'''
Transpose the input
'''
def __call__(self, data):
# (T V C) -> (C T V)
data = np.transpose(data, (2, 0, 1))
return data[...,np.newaxis]
class SkeletonInput(object):
'''
Transpose the input
'''
def __call__(self, data):
# (T V C) -> (T C V)
data = np.transpose(data, (0, 2, 1))
return data[...,np.newaxis]
class TwoView(object):
def __init__(self,trf_cfg):
assert is_list(trf_cfg)
self.transform = T.Compose([get_transform(cfg) for cfg in trf_cfg])
def __call__(self, data):
return np.concatenate([self.transform(data), self.transform(data)], axis=1)
class MSGGTransform():
def __init__(self, joint_format="coco"):
if joint_format == "coco": #17
self.mask=[6,8,14,12,7,13,5,10,16,11,9,15]
elif joint_format in ['alphapose', 'openpose']: #18
self.mask=[2,3,9,8,6,12,5,4,10,11,7,13]
else:
raise ValueError("Invalid joint_format.")
def __call__(self, x):
result=x[...,self.mask,:].copy()
return result