import os
import pickle
import os.path as osp
import torch.utils.data as tordata
import json
from utils import get_msg_mgr
class DataSet(tordata.Dataset):
def __init__(self, data_cfg, training):
"""
seqs_info: the list with each element indicating
a certain gait sequence presented as [label, type, view, paths];
"""
self.__dataset_parser(data_cfg, training)
self.cache = data_cfg['cache']
self.label_list = [seq_info[0] for seq_info in self.seqs_info]
self.types_list = [seq_info[1] for seq_info in self.seqs_info]
self.views_list = [seq_info[2] for seq_info in self.seqs_info]
self.label_set = sorted(list(set(self.label_list)))
self.types_set = sorted(list(set(self.types_list)))
self.views_set = sorted(list(set(self.views_list)))
self.seqs_data = [None] * len(self)
self.indices_dict = {label: [] for label in self.label_set}
for i, seq_info in enumerate(self.seqs_info):
self.indices_dict[seq_info[0]].append(i)
if self.cache:
self.__load_all_data()
def __len__(self):
return len(self.seqs_info)
def __loader__(self, paths):
paths = sorted(paths)
data_list = []
for pth in paths:
if pth.endswith('.pkl'):
with open(pth, 'rb') as f:
_ = pickle.load(f)
f.close()
else:
raise ValueError('- Loader - just support .pkl !!!')
data_list.append(_)
for idx, data in enumerate(data_list):
if len(data) != len(data_list[0]):
raise ValueError(
'Each input data({}) should have the same length.'.format(paths[idx]))
if len(data) == 0:
raise ValueError(
'Each input data({}) should have at least one element.'.format(paths[idx]))
return data_list
def __getitem__(self, idx):
if not self.cache:
data_list = self.__loader__(self.seqs_info[idx][-1])
elif self.seqs_data[idx] is None:
data_list = self.__loader__(self.seqs_info[idx][-1])
self.seqs_data[idx] = data_list
else:
data_list = self.seqs_data[idx]
seq_info = self.seqs_info[idx]
return data_list, seq_info
def __load_all_data(self):
for idx in range(len(self)):
self.__getitem__(idx)
def __dataset_parser(self, data_config, training):
dataset_root = data_config['dataset_root']
try:
data_in_use = data_config['data_in_use'] # [n], true or false
except:
data_in_use = None
with open(data_config['dataset_partition'], "rb") as f:
partition = json.load(f)
train_set = partition["TRAIN_SET"]
test_set = partition["TEST_SET"]
label_list = os.listdir(dataset_root)
train_set = [label for label in train_set if label in label_list]
test_set = [label for label in test_set if label in label_list]
miss_pids = [label for label in label_list if label not in (
train_set + test_set)]
msg_mgr = get_msg_mgr()
def log_pid_list(pid_list):
if len(pid_list) >= 3:
msg_mgr.log_info('[%s, %s, ..., %s]' %
(pid_list[0], pid_list[1], pid_list[-1]))
else:
msg_mgr.log_info(pid_list)
if len(miss_pids) > 0:
msg_mgr.log_debug('-------- Miss Pid List --------')
msg_mgr.log_debug(miss_pids)
if training:
msg_mgr.log_info("-------- Train Pid List --------")
log_pid_list(train_set)
else:
msg_mgr.log_info("-------- Test Pid List --------")
log_pid_list(test_set)
def get_seqs_info_list(label_set):
seqs_info_list = []
for lab in label_set:
for typ in sorted(os.listdir(osp.join(dataset_root, lab))):
for vie in sorted(os.listdir(osp.join(dataset_root, lab, typ))):
seq_info = [lab, typ, vie]
seq_path = osp.join(dataset_root, *seq_info)
seq_dirs = sorted(os.listdir(seq_path))
if seq_dirs != []:
seq_dirs = [osp.join(seq_path, dir)
for dir in seq_dirs]
if data_in_use is not None:
seq_dirs = [dir for dir, use_bl in zip(
seq_dirs, data_in_use) if use_bl]
seqs_info_list.append([*seq_info, seq_dirs])
else:
msg_mgr.log_debug(
'Find no .pkl file in %s-%s-%s.' % (lab, typ, vie))
return seqs_info_list
self.seqs_info = get_seqs_info_list(
train_set) if training else get_seqs_info_list(test_set)