[66de0a]: / datasets / pretreatment_heatmap.py

Download this file

713 lines (603 with data), 29.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
import os
import cv2
import yaml
import math
import torch
import random
import pickle
import argparse
import numpy as np
from glob import glob
from tqdm import tqdm
import matplotlib.cm as cm
import torch.distributed as dist
from torchvision import transforms as T
from torch.utils.data import Dataset, DataLoader
from sklearn.impute import KNNImputer, SimpleImputer
torch.manual_seed(347)
random.seed(347)
#########################################################################################################
# The following code is the base class code for generating heatmap.
#########################################################################################################
class GeneratePoseTarget:
"""Generate pseudo heatmaps based on joint coordinates and confidence.
Required keys are "keypoint", "img_shape", "keypoint_score" (optional),
added or modified keys are "imgs".
Args:
sigma (float): The sigma of the generated gaussian map. Default: 0.6.
use_score (bool): Use the confidence score of keypoints as the maximum
of the gaussian maps. Default: True.
with_kp (bool): Generate pseudo heatmaps for keypoints. Default: True.
with_limb (bool): Generate pseudo heatmaps for limbs. At least one of
'with_kp' and 'with_limb' should be True. Default: False.
skeletons (tuple[tuple]): The definition of human skeletons.
Default: ((0, 1), (0, 2), (1, 3), (2, 4), (0, 5), (5, 7), (7, 9),
(0, 6), (6, 8), (8, 10), (5, 11), (11, 13), (13, 15),
(6, 12), (12, 14), (14, 16), (11, 12)),
which is the definition of COCO-17p skeletons.
double (bool): Output both original heatmaps and flipped heatmaps.
Default: False.
left_kp (tuple[int]): Indexes of left keypoints, which is used when
flipping heatmaps. Default: (1, 3, 5, 7, 9, 11, 13, 15),
which is left keypoints in COCO-17p.
right_kp (tuple[int]): Indexes of right keypoints, which is used when
flipping heatmaps. Default: (2, 4, 6, 8, 10, 12, 14, 16),
which is right keypoints in COCO-17p.
left_limb (tuple[int]): Indexes of left limbs, which is used when
flipping heatmaps. Default: (1, 3, 5, 7, 9, 11, 13, 15),
which is left limbs of skeletons we defined for COCO-17p.
right_limb (tuple[int]): Indexes of right limbs, which is used when
flipping heatmaps. Default: (2, 4, 6, 8, 10, 12, 14, 16),
which is right limbs of skeletons we defined for COCO-17p.
"""
def __init__(self,
sigma=0.6,
use_score=True,
with_kp=True,
with_limb=False,
skeletons=((0, 1), (0, 2), (1, 3), (2, 4), (0, 5), (5, 7),
(7, 9), (0, 6), (6, 8), (8, 10), (5, 11), (11, 13),
(13, 15), (6, 12), (12, 14), (14, 16), (11, 12)),
double=False,
left_kp=(1, 3, 5, 7, 9, 11, 13, 15),
right_kp=(2, 4, 6, 8, 10, 12, 14, 16),
left_limb=(0, 2, 4, 5, 6, 10, 11, 12),
right_limb=(1, 3, 7, 8, 9, 13, 14, 15),
scaling=1.,
eps= 1e-3,
img_h=64,
img_w = 64):
self.sigma = sigma
self.use_score = use_score
self.with_kp = with_kp
self.with_limb = with_limb
self.double = double
self.eps = eps
assert self.with_kp + self.with_limb == 1, ('One of "with_limb" and "with_kp" should be set as True.')
self.left_kp = left_kp
self.right_kp = right_kp
self.skeletons = skeletons
self.left_limb = left_limb
self.right_limb = right_limb
self.scaling = scaling
self.img_h = img_h
self.img_w = img_w
def generate_a_heatmap(self, arr, centers, max_values, point_center):
"""Generate pseudo heatmap for one keypoint in one frame.
Args:
arr (np.ndarray): The array to store the generated heatmaps. Shape: img_h * img_w.
centers (np.ndarray): The coordinates of corresponding keypoints (of multiple persons). Shape: 1 * 2.
max_values (np.ndarray): The max values of each keypoint. Shape: (1, ).
point_center: Shape: (1, 2)
Returns:
np.ndarray: The generated pseudo heatmap.
"""
sigma = self.sigma
img_h, img_w = arr.shape
for center, max_value in zip(centers, max_values):
if max_value < self.eps:
continue
mu_x, mu_y = center[0], center[1]
tmp_st_x = int(mu_x - 3 * sigma)
tmp_ed_x = int(mu_x + 3 * sigma)
tmp_st_y = int(mu_y - 3 * sigma)
tmp_ed_y = int(mu_y + 3 * sigma)
st_x = max(tmp_st_x, 0)
ed_x = min(tmp_ed_x + 1, img_w)
st_y = max(tmp_st_y, 0)
ed_y = min(tmp_ed_y + 1, img_h)
x = np.arange(st_x, ed_x, 1, np.float32)
y = np.arange(st_y, ed_y, 1, np.float32)
# if the keypoint not in the heatmap coordinate system
if not (len(x) and len(y)):
continue
y = y[:, None]
patch = np.exp(-((x - mu_x)**2 + (y - mu_y)**2) / 2 / sigma**2)
patch = patch * max_value
arr[st_y:ed_y, st_x:ed_x] = np.maximum(arr[st_y:ed_y, st_x:ed_x], patch)
def generate_a_limb_heatmap(self, arr, starts, ends, start_values, end_values, point_center):
"""Generate pseudo heatmap for one limb in one frame.
Args:
arr (np.ndarray): The array to store the generated heatmaps. Shape: img_h * img_w.
starts (np.ndarray): The coordinates of one keypoint in the corresponding limbs. Shape: 1 * 2.
ends (np.ndarray): The coordinates of the other keypoint in the corresponding limbs. Shape: 1 * 2.
start_values (np.ndarray): The max values of one keypoint in the corresponding limbs. Shape: (1, ).
end_values (np.ndarray): The max values of the other keypoint in the corresponding limbs. Shape: (1, ).
Returns:
np.ndarray: The generated pseudo heatmap.
"""
sigma = self.sigma
img_h, img_w = arr.shape
for start, end, start_value, end_value in zip(starts, ends, start_values, end_values):
value_coeff = min(start_value, end_value)
if value_coeff < self.eps:
continue
min_x, max_x = min(start[0], end[0]), max(start[0], end[0])
min_y, max_y = min(start[1], end[1]), max(start[1], end[1])
tmp_min_x = int(min_x - 3 * sigma)
tmp_max_x = int(max_x + 3 * sigma)
tmp_min_y = int(min_y - 3 * sigma)
tmp_max_y = int(max_y + 3 * sigma)
min_x = max(tmp_min_x, 0)
max_x = min(tmp_max_x + 1, img_w)
min_y = max(tmp_min_y, 0)
max_y = min(tmp_max_y + 1, img_h)
x = np.arange(min_x, max_x, 1, np.float32)
y = np.arange(min_y, max_y, 1, np.float32)
if not (len(x) and len(y)):
continue
y = y[:, None]
x_0 = np.zeros_like(x)
y_0 = np.zeros_like(y)
# distance to start keypoints
d2_start = ((x - start[0])**2 + (y - start[1])**2)
# distance to end keypoints
d2_end = ((x - end[0])**2 + (y - end[1])**2)
# the distance between start and end keypoints.
d2_ab = ((start[0] - end[0])**2 + (start[1] - end[1])**2)
if d2_ab < 1:
self.generate_a_heatmap(arr, start[None], start_value[None], point_center)
continue
coeff = (d2_start - d2_end + d2_ab) / 2. / d2_ab
a_dominate = coeff <= 0
b_dominate = coeff >= 1
seg_dominate = 1 - a_dominate - b_dominate
position = np.stack([x + y_0, y + x_0], axis=-1)
projection = start + np.stack([coeff, coeff], axis=-1) * (end - start)
d2_line = position - projection
d2_line = d2_line[:, :, 0]**2 + d2_line[:, :, 1]**2
d2_seg = a_dominate * d2_start + b_dominate * d2_end + seg_dominate * d2_line
patch = np.exp(-d2_seg / 2. / sigma**2)
patch = patch * value_coeff
arr[min_y:max_y, min_x:max_x] = np.maximum(arr[min_y:max_y, min_x:max_x], patch)
def generate_heatmap(self, arr, kps, max_values):
"""Generate pseudo heatmap for all keypoints and limbs in one frame (if
needed).
Args:
arr (np.ndarray): The array to store the generated heatmaps. Shape: V * img_h * img_w.
kps (np.ndarray): The coordinates of keypoints in this frame. Shape: 1 * V * 2.
max_values (np.ndarray): The confidence score of each keypoint. Shape: 1 * V.
Returns:
np.ndarray: The generated pseudo heatmap.
"""
point_center = kps.mean(1)
if self.with_kp:
num_kp = kps.shape[1]
for i in range(num_kp):
self.generate_a_heatmap(arr[i], kps[:, i], max_values[:, i], point_center)
if self.with_limb:
for i, limb in enumerate(self.skeletons):
start_idx, end_idx = limb
starts = kps[:, start_idx]
ends = kps[:, end_idx]
start_values = max_values[:, start_idx]
end_values = max_values[:, end_idx]
self.generate_a_limb_heatmap(arr[i], starts, ends, start_values, end_values, point_center)
def gen_an_aug(self, pose_data):
"""Generate pseudo heatmaps for all frames.
Args:
pose_data (array): [1, T, V, C]
Returns:
list[np.ndarray]: The generated pseudo heatmaps.
"""
all_kps = pose_data[..., :2]
kp_shape = pose_data.shape # [1, T, V, 2]
if pose_data.shape[-1] == 3:
all_kpscores = pose_data[..., -1] # [1, T, V]
else:
all_kpscores = np.ones(kp_shape[:-1], dtype=np.float32)
# scale img_h, img_w and kps
img_h = int(self.img_h * self.scaling + 0.5)
img_w = int(self.img_w * self.scaling + 0.5)
all_kps[..., :2] *= self.scaling
num_frame = kp_shape[1]
num_c = 0
if self.with_kp:
num_c += all_kps.shape[2]
if self.with_limb:
num_c += len(self.skeletons)
ret = np.zeros([num_frame, num_c, img_h, img_w], dtype=np.float32)
for i in range(num_frame):
# 1, V, C
kps = all_kps[:, i]
# 1, V
kpscores = all_kpscores[:, i] if self.use_score else np.ones_like(all_kpscores[:, i])
self.generate_heatmap(ret[i], kps, kpscores)
return ret
def __call__(self, pose_data):
"""
pose_data: (T, V, C=3/2)
1: means person number
"""
pose_data = pose_data[None,...] # (1, T, V, C=3/2)
heatmap = self.gen_an_aug(pose_data)
if self.double:
indices = np.arange(heatmap.shape[1], dtype=np.int64)
left, right = (self.left_kp, self.right_kp) if self.with_kp else (self.left_limb, self.right_limb)
for l, r in zip(left, right): # noqa: E741
indices[l] = r
indices[r] = l
heatmap_flip = heatmap[..., ::-1][:, indices]
heatmap = np.concatenate([heatmap, heatmap_flip])
return heatmap
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'sigma={self.sigma}, '
f'use_score={self.use_score}, '
f'with_kp={self.with_kp}, '
f'with_limb={self.with_limb}, '
f'skeletons={self.skeletons}, '
f'double={self.double}, '
f'left_kp={self.left_kp}, '
f'right_kp={self.right_kp})')
return repr_str
class HeatmapToImage:
"""
Convert the heatmap data to image data.
"""
def __init__(self) -> None:
self.cmap = cm.gray
def __call__(self, heatmaps):
"""
heatmaps: (T, 17, H, W)
return images: (T, 1, H, W)
"""
heatmaps = [x.transpose(1, 2, 0) for x in heatmaps]
h, w, _ = heatmaps[0].shape
newh, neww = int(h), int(w)
heatmaps = [np.max(x, axis=-1) for x in heatmaps]
heatmaps = [(self.cmap(x)[..., :3] * 255).astype(np.uint8) for x in heatmaps]
heatmaps = [cv2.resize(x, (neww, newh)) for x in heatmaps]
return np.ascontiguousarray(np.mean(np.array(heatmaps), axis=-1, keepdims=True).transpose(0,3,1,2))
class CenterAndScaleNormalizer:
def __init__(self, pose_format="coco", use_conf=True, heatmap_image_height=128) -> None:
"""
Parameters:
- pose_format (str): Specifies the format of the keypoints.
This parameter determines how the keypoints are structured and indexed.
The supported formats are "coco" or "openpose-x" where 'x' can be either 18 or 25, indicating the number of keypoints used by the OpenPose model.
- use_conf (bool): Indicates whether confidence scores.
- heatmap_image_height (int): Sets the height (in pixels) for the heatmap images that will be normlization.
"""
self.pose_format = pose_format
self.use_conf = use_conf
self.heatmap_image_height = heatmap_image_height
def __call__(self, data):
"""
Implements step (a) from Figure 2 in the SkeletonGait paper.
data: (T, V, C)
- T: number of frames
- V: number of joints
- C: dimensionality, where 2 indicates joint coordinates and 1 indicates the confidence score
return data: (T, V, C)
"""
if self.use_conf:
pose_seq = data[..., :-1]
score = np.expand_dims(data[..., -1], axis=-1)
else:
pose_seq = data[..., :-1]
# Hip as the center point
if self.pose_format.lower() == "coco":
hip = (pose_seq[:, 11] + pose_seq[:, 12]) / 2. # [t, 2]
elif self.pose_format.split('-')[0].lower() == "openpose":
hip = (pose_seq[:, 9] + pose_seq[:, 12]) / 2. # [t, 2]
else:
raise ValueError(f"Error value for pose_format: {self.pose_format} in CenterAndScale Class.")
# Center-normalization
pose_seq = pose_seq - hip[:, np.newaxis, :]
# Scale-normalization
y_max = np.max(pose_seq[:, :, 1], axis=-1) # [t]
y_min = np.min(pose_seq[:, :, 1], axis=-1) # [t]
pose_seq *= ((self.heatmap_image_height // 1.5) / (y_max - y_min)[:, np.newaxis, np.newaxis]) # [t, v, 2]
pose_seq += self.heatmap_image_height // 2
if self.use_conf:
pose_seq = np.concatenate([pose_seq, score], axis=-1)
return pose_seq
class PadKeypoints:
"""
Pad the keypoints with missing values.
"""
def __init__(self, pad_method="knn", use_conf=True) -> None:
"""
pad_method (str): Specifies the method used to pad the missing values.
The supported methods are "knn" and "simple".
use_conf (bool): Indicates whether confidence scores.
"""
self.use_conf = use_conf
if pad_method.lower() == "knn":
self.imputer = KNNImputer(missing_values=0.0, n_neighbors=4, weights="distance", add_indicator=False)
elif pad_method.lower() == "simple":
self.imputer = SimpleImputer(missing_values=0.0, strategy='mean',add_indicator=True)
else:
raise ValueError(f"Error value for padding method: {pad_method}")
def __call__(self, raw_data):
"""
raw_data: (T, V, C)
- T: number of frames
- V: number of joints
- C: dimensionality, where 2 indicates joint coordinates and 1 indicates the confidence score
return padded_data: (T, V, C)
"""
T, V, C = raw_data.shape
if self.use_conf:
data = raw_data[..., :-1]
score = np.expand_dims(raw_data[..., -1], axis=-1)
C = C - 1
else:
data = raw_data[..., :-1]
data = data.reshape((T, V*C))
padded_data = self.imputer.fit_transform(data)
try:
padded_data = padded_data.reshape((T, V, C))
except:
padded_data = data.reshape((T, V, C))
if self.use_conf:
padded_data = np.concatenate([padded_data, score], axis=-1)
return padded_data
class COCO18toCOCO17:
"""
Transfer COCO18 format (Openpose extracted) to COCO17 format
"""
def __init__(self, transfer_to_coco17=True):
"""
transfer_to_coco17 (bool): Indicates whether to transfer the keypoints from COCO18 to COCO17 format.
"""
self.map_dict = {
0: 0,# "nose",
1: 15,# "left_eye",
2: 14,# "right_eye",
3: 17,# "left_ear",
4: 16,# "right_ear",
5: 5,# "left_shoulder",
6: 2,# "right_shoulder",
7: 6,# "left_elbow",
8: 3,# "right_elbow",
9: 7,# "left_wrist",
10: 4,# "right_wrist",
11: 11,# "left_hip",
12: 8,# "right_hip",
13: 12,# "left_knee",
14: 9,# "right_knee",
15: 13,# "left_ankle",
16: 10,# "right_ankle"
}
self.transfer = transfer_to_coco17
def __call__(self, data):
"""
data: (T, 18, C)
- T: number of frames
- 18: number of joints of COCO18 format
- C: dimensionality, where 2 indicates joint coordinates and 1 indicates the confidence score
return data: (T, 17, C)
"""
if self.transfer:
"""
input data [T, 18, C] coco18 format
return data [T, 17, C] coco17 format
"""
T, _, C = data.shape
coco17_pkl_data = np.zeros((T, 17, C))
for i in range(17):
coco17_pkl_data[:,i,:] = data[:,self.map_dict[i],:]
return coco17_pkl_data
else:
return data
class GatherTransform(object):
"""
Gather the different transforms.
"""
def __init__(self, base_transform, transform_bone, transform_joint):
"""
base_transform: Some common transform, e.g., COCO18toCOCO17, PadKeypoints, CenterAndScale
transform_bone: GeneratePoseTarget for generate bone heatmap
transform_joint: GeneratePoseTarget for generate joint heatmap
"""
self.base_transform = base_transform
self.transform_bone = transform_bone
self.transform_joint = transform_joint
def __call__(self, pose_data):
x = self.base_transform(pose_data)
heatmap_bone = self.transform_bone(x) # [T, 1, H, W]
heatmap_joint = self.transform_joint(x) # [T, 1, H, W]
heatmap = np.concatenate([heatmap_bone, heatmap_joint], axis=1)
return heatmap
class HeatmapAlignment():
def __init__(self, align=True, final_img_size=64, offset=0, heatmap_image_size=128) -> None:
self.align = align
self.final_img_size = final_img_size
self.offset = offset
self.heatmap_image_size = heatmap_image_size
def center_crop(self, heatmap):
"""
Input: [1, heatmap_image_size, heatmap_image_size]
Output: [1, final_img_size, final_img_size]
"""
raw_heatmap = heatmap[0]
if self.align:
y_sum = raw_heatmap.sum(axis=1)
y_top = (y_sum != 0).argmax(axis=0)
y_btm = (y_sum != 0).cumsum(axis=0).argmax(axis=0)
height = y_btm - y_top + 1
raw_heatmap = raw_heatmap[y_top - self.offset: y_btm + 1 + self.offset, (self.heatmap_image_size // 2) - (height // 2) : (self.heatmap_image_size // 2) + (height // 2) + 1]
raw_heatmap = cv2.resize(raw_heatmap, (self.final_img_size, self.final_img_size), interpolation=cv2.INTER_AREA)
return raw_heatmap[np.newaxis, :, :] # [1, final_img_size, final_img_size]
def __call__(self, heatmap_imgs):
"""
heatmap_imgs: (T, 1, raw_size, raw_size)
return (T, 1, final_img_size, final_img_size)
"""
heatmap_imgs = heatmap_imgs / 255.
heatmap_imgs = np.array([self.center_crop(heatmap_img) for heatmap_img in heatmap_imgs])
return (heatmap_imgs * 255).astype('uint8')
def GenerateHeatmapTransform(
coco18tococo17_args,
padkeypoints_args,
norm_args,
heatmap_generator_args,
align_args
):
base_transform = T.Compose([
COCO18toCOCO17(**coco18tococo17_args),
PadKeypoints(**padkeypoints_args),
CenterAndScaleNormalizer(**norm_args),
])
heatmap_generator_args["with_limb"] = True
heatmap_generator_args["with_kp"] = False
transform_bone = T.Compose([
GeneratePoseTarget(**heatmap_generator_args),
HeatmapToImage(),
HeatmapAlignment(**align_args)
])
heatmap_generator_args["with_limb"] = False
heatmap_generator_args["with_kp"] = True
transform_joint = T.Compose([
GeneratePoseTarget(**heatmap_generator_args),
HeatmapToImage(),
HeatmapAlignment(**align_args)
])
transform = T.Compose([
GatherTransform(base_transform, transform_bone, transform_joint) # [T, 2, H, W]
])
return transform
#########################################################################################################
# The following code is DDP progress codes.
#########################################################################################################
class SequentialDistributedSampler(torch.utils.data.sampler.Sampler):
"""
Distributed Sampler that subsamples indicies sequentially,
making it easier to collate all results at the end.
Even though we only use this sampler for eval and predict (no training),
which means that the model params won't have to be synced (i.e. will not hang
for synchronization even if varied number of forward passes), we still add extra
samples to the sampler to make it evenly divisible (like in `DistributedSampler`)
to make it easy to `gather` or `reduce` resulting tensors at the end of the loop.
"""
def __init__(self, dataset, batch_size, rank=None, num_replicas=None):
if num_replicas is None:
if not torch.distributed.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = torch.distributed.get_world_size()
if rank is None:
if not torch.distributed.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = torch.distributed.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.batch_size = batch_size
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.batch_size / self.num_replicas)) * self.batch_size
self.total_size = self.num_samples * self.num_replicas
def __iter__(self):
indices = list(range(len(self.dataset)))
# add extra samples to make it evenly divisible
indices += [indices[-1]] * (self.total_size - len(indices))
# subsample
indices = indices[self.rank * self.num_samples : (self.rank + 1) * self.num_samples]
return iter(indices)
def __len__(self):
return self.num_samples
class TransferDataset(Dataset):
def __init__(self, args, generate_heatemap_cfgs) -> None:
super().__init__()
pose_root = args.pose_data_path
sigma = generate_heatemap_cfgs['heatmap_generator_args']['sigma']
self.dataset_name = args.dataset_name
assert self.dataset_name.lower() in ["sustech1k", "grew", "ccpg", "oumvlp", "ou-mvlp", "gait3d", "casiab", "casiae"], f"Invalid dataset name: {self.dataset_name}"
self.save_root = os.path.join(args.save_root, f"{self.dataset_name}_sigma_{sigma}_{args.ext_name}")
os.makedirs(self.save_root, exist_ok=True)
self.heatmap_transform = GenerateHeatmapTransform(**generate_heatemap_cfgs)
if self.dataset_name.lower() == "sustech1k":
self.all_ps_data_paths = sorted(glob(os.path.join(pose_root, "*/*/*/03*.pkl")))
else:
self.all_ps_data_paths = sorted(glob(os.path.join(pose_root, "*/*/*/*.pkl")))
def __len__(self):
return len(self.all_ps_data_paths)
def __getitem__(self, index):
pose_path = self.all_ps_data_paths[index]
with open(pose_path, "rb") as f:
pose_data = pickle.load(f)
if self.dataset_name.lower() == "grew":
# print(pose_data.shape)
pose_data = pose_data[:,2:].reshape(-1, 17, 3)
tmp_split = pose_path.split('/')
heatmap_img = self.heatmap_transform(pose_data) # [T, 2, H, W]
save_path_pkl = os.path.join(self.save_root, 'pkl', *tmp_split[-4:-1])
os.makedirs(save_path_pkl, exist_ok=True)
# save some visualization
if index < 10:
# save images
save_path_img = os.path.join(self.save_root, 'images', *tmp_split[-4:-1])
os.makedirs(save_path_img, exist_ok=True)
# save_heatemapimg_index = random.choice(list(range(heatmap_img.shape[0])))
for save_heatemapimg_index in range(heatmap_img.shape[0]):
cv2.imwrite(os.path.join(save_path_img, f'bone_{save_heatemapimg_index}.jpg'), heatmap_img[save_heatemapimg_index, 0])
cv2.imwrite(os.path.join(save_path_img, f'pose_{save_heatemapimg_index}.jpg'), heatmap_img[save_heatemapimg_index, 1])
pickle.dump(heatmap_img, open(os.path.join(save_path_pkl, tmp_split[-1]), 'wb'))
return None
def mycollate(_):
return None
def get_args():
parser = argparse.ArgumentParser(description='Utility for generating heatmaps from pose data.')
parser.add_argument('--pose_data_path', type=str, required=True, help="Path to the root directory containing pose data (.pkl files, ID-level) files.")
parser.add_argument('--save_root', type=str, required=True, help="Root directory where generated heatmap .pkl files will be saved (ID-level).")
parser.add_argument('--ext_name', type=str, default='', help="Extension name to be appended to the 'save_root' for identification.")
parser.add_argument('--dataset_name', type=str, required=True, help="Name of the dataset being preprocessed.")
parser.add_argument('--heatemap_cfg_path', type=str, default='configs/skeletongait/pretreatment_heatmap.yaml', help="Path to the heatmap generator configuration file.")
parser.add_argument("--local_rank", type=int, default=0, help="Local rank for distributed processing, defaults to 0 for non-distributed setups.")
opt = parser.parse_args()
return opt
def replace_variables(data, context=None):
if context is None:
context = {}
if isinstance(data, dict):
for key, value in data.items():
data[key] = replace_variables(value, context)
elif isinstance(data, list):
data = [replace_variables(item, context) for item in data]
elif isinstance(data, str):
if data.startswith('${') and data.endswith('}'):
var_path = data[2:-1].split('.')
var_value = context
try:
for part in var_path:
var_value = var_value[part]
return var_value
except KeyError:
raise ValueError(f"Variable {data} not found in context")
return data
if __name__ == "__main__":
dist.init_process_group("nccl", init_method='env://')
local_rank = torch.distributed.get_rank()
world_size = torch.distributed.get_world_size()
args = get_args()
# Load the heatmap generator configuration
with open(args.heatemap_cfg_path, 'r') as stream:
generate_heatemap_cfgs = yaml.safe_load(stream)
generate_heatemap_cfgs = replace_variables(generate_heatemap_cfgs, generate_heatemap_cfgs)
# Create the dataset
dataset = TransferDataset(args, generate_heatemap_cfgs)
# Create the dataloader
dist_sampler = SequentialDistributedSampler(dataset, batch_size=1, rank=local_rank, num_replicas=world_size)
dataloader = DataLoader(dataset=dataset, batch_size=1, sampler=dist_sampler, num_workers=8, collate_fn=mycollate)
for _, tmp in tqdm(enumerate(dataloader), total=len(dataloader)):
pass