[66de0a]: / datasets / SUSTech1K / pretreatment_SUSTech1K.py

Download this file

221 lines (193 with data), 10.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# This source is based on https://github.com/AbnerHqC/GaitSet/blob/master/pretreatment.py
import argparse
import logging
import multiprocessing as mp
import os
import pickle
from collections import defaultdict
from functools import partial
from pathlib import Path
from typing import Tuple
import cv2
import numpy as np
from tqdm import tqdm
import json
import open3d as o3d
def compare_pcd_rgb_timestamp(pcd_file,rgb_file):
pcd_time = float(pcd_file.split('/')[-1].replace('.pcd','')) + 0.05
rgb_time = float(rgb_file.split('/')[-1].replace('.jpg','')[:10] + '.' + rgb_file.split('/')[-1].replace('.jpg','')[10:])
return pcd_time, rgb_time
def imgs2pickle(img_groups: Tuple, output_path: Path, img_size: int = 64, verbose: bool = False, dataset='CASIAB') -> None:
"""Reads a group of images and saves the data in pickle format.
Args:
img_groups (Tuple): Tuple of (sid, seq, view) and list of image paths.
output_path (Path): Output path.
img_size (int, optional): Image resizing size. Defaults to 64.
verbose (bool, optional): Display debug info. Defaults to False.
"""
sinfo = img_groups[0]
img_paths = img_groups[1] # path with modality name
to_pickle = []
cnt = 0
pcd_list = []
rgb_list = []
threshold = 0.020 # 20 ms
for index, modality_files in enumerate(img_paths):
data_files = modality_files[1]
modality = modality_files[0]
if modality == 'PCDs':
data = [np.asarray(o3d.io.read_point_cloud(points).points) for points in data_files]
pcd_list = data_files
elif modality == 'RGB_raw':
imgs = [cv2.imread(rgb) for rgb in data_files]
rgb_list = data_files
imgs = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in imgs]
HWs = [img.shape[:2] for img in imgs]
# transpose to (C, H W)
data = [cv2.resize(img, (img_size, img_size), interpolation=cv2.INTER_CUBIC) for img in imgs]
imgs = [img.transpose(2, 0, 1) for img in imgs]
data = np.asarray(data)
HWs = np.asarray(HWs)
elif modality == 'Sils_raw':
sils = [cv2.imread(sil, cv2.IMREAD_GRAYSCALE) for sil in data_files]
data = [cv2.resize(sil, (img_size, img_size), interpolation=cv2.INTER_CUBIC) for sil in sils]
data = np.asarray(data)
elif modality == 'Sils_aligned':
sils = [cv2.imread(sil, cv2.IMREAD_GRAYSCALE) for sil in data_files]
data = [cv2.resize(sil, (img_size, img_size), interpolation=cv2.INTER_CUBIC) for sil in sils]
data = np.asarray(data)
elif modality == 'Pose':
data = [json.load(open(pose)) for pose in data_files]
data = np.asarray(data)
elif modality == 'PCDs_depths':
imgs = [cv2.imread(rgb) for rgb in data_files]
imgs = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in imgs]
data = [img.transpose(2, 0, 1) for img in imgs]
data = np.asarray(data)
elif modality == 'PCDs_sils':
data = [cv2.imread(sil, cv2.IMREAD_GRAYSCALE) for sil in data_files]
data = np.asarray(data)
dst_path = os.path.join(output_path, *sinfo)
os.makedirs(dst_path, exist_ok=True)
if modality == 'RGB_raw':
pkl_path = os.path.join(dst_path, f'{cnt:02d}-{sinfo[2]}-Camera-Ratios-HW.pkl')
pickle.dump(HWs, open(pkl_path, 'wb'))
cnt += 1
if 'PCDs' in modality:
pkl_path = os.path.join(dst_path, f'{cnt:02d}-{sinfo[2]}-LiDAR-{modality}.pkl')
pickle.dump(data, open(pkl_path, 'wb'))
else:
pkl_path = os.path.join(dst_path, f'{cnt:02d}-{sinfo[2]}-Camera-{modality}.pkl')
pickle.dump(data, open(pkl_path, 'wb'))
cnt += 1
pcd_indexs = []
rgb_indexs = []
# print(pcd_list)
for pcd_index in range(len(pcd_list)):
time_diff = 1
tmp = pcd_index, 0
for rgb_index in range(len(rgb_list)):
pcd_t, rgb_t = compare_pcd_rgb_timestamp(pcd_list[pcd_index], rgb_list[rgb_index])
diff = abs(pcd_t - rgb_t)
if diff < time_diff:
tmp = pcd_index, rgb_index
time_diff = diff
if time_diff <= threshold:
pcd_indexs.append(tmp[0])
rgb_indexs.append(tmp[1])
if len(set(pcd_indexs)) != len(pcd_indexs):
print(img_groups[0], pcd_indexs, rgb_indexs, len(pcd_indexs) == len(pcd_indexs))
for index, modality_files in enumerate(img_paths):
modality = modality_files[0]
data_files = modality_files[1]
data_files = [data_files[index] for index in pcd_indexs] if 'PCDs' in modality else [data_files[index] for index in rgb_indexs]
if modality == 'PCDs':
data = [np.asarray(o3d.io.read_point_cloud(points).points) for points in data_files]
pcd_list = data_files
elif modality == 'RGB_raw':
imgs = [cv2.imread(rgb) for rgb in data_files]
rgb_list = data_files
imgs = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in imgs]
HWs = [img.shape[:2] for img in imgs]
# transpose to (C, H W)
data = [cv2.resize(img, (img_size, img_size), interpolation=cv2.INTER_CUBIC) for img in imgs]
imgs = [img.transpose(2, 0, 1) for img in imgs]
data = np.asarray(data)
HWs = np.asarray(HWs)
elif modality == 'Sils_raw':
sils = [cv2.imread(sil, cv2.IMREAD_GRAYSCALE) for sil in data_files]
data = [cv2.resize(sil, (img_size, img_size), interpolation=cv2.INTER_CUBIC) for sil in sils]
data = np.asarray(data)
elif modality == 'Sils_aligned':
sils = [cv2.imread(sil, cv2.IMREAD_GRAYSCALE) for sil in data_files]
data = [cv2.resize(sil, (img_size, img_size), interpolation=cv2.INTER_CUBIC) for sil in sils]
data = np.asarray(data)
elif modality == 'Pose':
data = [json.load(open(pose)) for pose in data_files]
data = np.asarray(data)
elif modality == 'PCDs_depths':
imgs = [cv2.imread(rgb) for rgb in data_files]
imgs = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in imgs]
data = [img.transpose(2, 0, 1) for img in imgs]
data = np.asarray(data)
elif modality == 'PCDs_sils':
data = [cv2.imread(sil, cv2.IMREAD_GRAYSCALE) for sil in data_files]
data = np.asarray(data)
dst_path = os.path.join(output_path, *sinfo)
os.makedirs(dst_path, exist_ok=True)
if modality == 'RGB_raw':
pkl_path = os.path.join(dst_path, f'{cnt:02d}-sync-{sinfo[2]}-Camera-Ratios-HW.pkl')
pickle.dump(HWs, open(pkl_path, 'wb'))
cnt += 1
if 'PCDs' in modality:
pkl_path = os.path.join(dst_path, f'{cnt:02d}-sync-{sinfo[2]}-LiDAR-{modality}.pkl')
pickle.dump(data, open(pkl_path, 'wb'))
else:
pkl_path = os.path.join(dst_path, f'{cnt:02d}-sync-{sinfo[2]}-Camera-{modality}.pkl')
pickle.dump(data, open(pkl_path, 'wb'))
cnt += 1
def pretreat(input_path: Path, output_path: Path, img_size: int = 64, workers: int = 4, verbose: bool = False, dataset: str = 'CASIAB') -> None:
"""Reads a dataset and saves the data in pickle format.
Args:
input_path (Path): Dataset root path.
output_path (Path): Output path.
img_size (int, optional): Image resizing size. Defaults to 64.
workers (int, optional): Number of thread workers. Defaults to 4.
verbose (bool, optional): Display debug info. Defaults to False.
"""
img_groups = defaultdict(list)
logging.info(f'Listing {input_path}')
total_files = 0
for id_ in tqdm(sorted(os.listdir(input_path))):
for type_ in os.listdir(os.path.join(input_path,id_)):
for view_ in os.listdir(os.path.join(input_path,id_,type_)):
for modality in sorted(os.listdir(os.path.join(input_path,id_,type_,view_))):
modality_path = os.path.join(input_path,id_,type_,view_,modality)
file_names = sorted(os.listdir(modality_path))
file_names = [os.path.join(modality_path, file_name) for file_name in file_names]
img_groups[(id_, type_, view_)].append((modality, file_names))
total_files += 1
logging.info(f'Total files listed: {total_files}')
progress = tqdm(total=len(img_groups), desc='Pretreating', unit='folder')
with mp.Pool(workers) as pool:
logging.info(f'Start pretreating {input_path}')
for _ in pool.imap_unordered(partial(imgs2pickle, output_path=output_path, img_size=img_size, verbose=verbose, dataset=dataset), img_groups.items()):
progress.update(1)
logging.info('Done')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='OpenGait dataset pretreatment module.')
parser.add_argument('-i', '--input_path', default='', type=str, help='Root path of raw dataset.')
parser.add_argument('-o', '--output_path', default='', type=str, help='Output path of pickled dataset.')
parser.add_argument('-l', '--log_file', default='./pretreatment.log', type=str, help='Log file path. Default: ./pretreatment.log')
parser.add_argument('-n', '--n_workers', default=4, type=int, help='Number of thread workers. Default: 4')
parser.add_argument('-r', '--img_size', default=64, type=int, help='Image resizing size. Default 64')
parser.add_argument('-d', '--dataset', default='CASIAB', type=str, help='Dataset for pretreatment.')
parser.add_argument('-v', '--verbose', default=False, action='store_true', help='Display debug info.')
args = parser.parse_args()
logging.basicConfig(level=logging.INFO, filename=args.log_file, filemode='w', format='[%(asctime)s - %(levelname)s]: %(message)s')
if args.verbose:
logging.getLogger().setLevel(logging.DEBUG)
logging.info('Verbose mode is on.')
for k, v in args.__dict__.items():
logging.debug(f'{k}: {v}')
pretreat(input_path=Path(args.input_path), output_path=Path(args.output_path), img_size=args.img_size, workers=args.n_workers, verbose=args.verbose, dataset=args.dataset)