[66de0a]: / datasets / Gait3D-Parsing / pretreatment_gps.py

Download this file

165 lines (136 with data), 7.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# This source is based on https://github.com/AbnerHqC/GaitSet/blob/master/pretreatment.py
import argparse
import logging
import multiprocessing as mp
import os
import pickle
from collections import defaultdict
from functools import partial
from pathlib import Path
from typing import Tuple
import cv2
import numpy as np
from tqdm import tqdm
def imgs2pickle(img_groups: Tuple, output_path: Path, img_size: int = 64, verbose: bool = False, parsing: bool = False, dataset='CASIAB') -> None:
"""Reads a group of images and saves the data in pickle format.
Args:
img_groups (Tuple): Tuple of (sid, seq, view) and list of image paths.
output_path (Path): Output path.
img_size (int, optional): Image resizing size. Defaults to 64.
verbose (bool, optional): Display debug info. Defaults to False.
"""
sinfo = img_groups[0]
img_paths = img_groups[1]
to_pickle = []
for img_file in sorted(img_paths):
if verbose:
logging.debug(f'Reading sid {sinfo[0]}, seq {sinfo[1]}, view {sinfo[2]} from {img_file}')
img = cv2.imread(str(img_file), cv2.IMREAD_GRAYSCALE)
if dataset == 'GREW':
to_pickle.append(img.astype('uint8'))
continue
if parsing:
img_sil = (img>0).astype('uint8') * 255
else:
img_sil = img
if img_sil.sum() <= 10000:
if verbose:
logging.debug(f'Image sum: {img_sil.sum()}')
logging.warning(f'{img_file} has no data.')
continue
# Get the upper and lower points
y_sum = img_sil.sum(axis=1)
y_top = (y_sum != 0).argmax(axis=0)
y_btm = (y_sum != 0).cumsum(axis=0).argmax(axis=0)
img = img[y_top: y_btm + 1, :]
img_sil = img_sil[y_top: y_btm + 1, :]
# As the height of a person is larger than the width,
# use the height to calculate resize ratio.
ratio = img.shape[1] / img.shape[0]
ratio_sil = img_sil.shape[1] / img_sil.shape[0]
assert ratio == ratio_sil
if parsing:
img = cv2.resize(img, (int(img_size * ratio), img_size), interpolation=cv2.INTER_NEAREST)
img_sil = cv2.resize(img_sil, (int(img_size * ratio), img_size), interpolation=cv2.INTER_NEAREST)
else:
img = cv2.resize(img, (int(img_size * ratio), img_size), interpolation=cv2.INTER_CUBIC)
img_sil = cv2.resize(img_sil, (int(img_size * ratio), img_size), interpolation=cv2.INTER_CUBIC)
# Get the median of the x-axis and take it as the person's x-center.
x_csum = img_sil.sum(axis=0).cumsum()
x_center = None
for idx, csum in enumerate(x_csum):
if csum > img_sil.sum() / 2:
x_center = idx
break
if not x_center:
logging.warning(f'{img_file} has no center.')
continue
# Get the left and right points
half_width = img_size // 2
left = x_center - half_width
right = x_center + half_width
if left <= 0 or right >= img.shape[1]:
left += half_width
right += half_width
_ = np.zeros((img.shape[0], half_width))
img = np.concatenate([_, img, _], axis=1)
to_pickle.append(img[:, left: right].astype('uint8'))
if to_pickle:
to_pickle = np.asarray(to_pickle)
dst_path = os.path.join(output_path, *sinfo)
# print(img_paths[0].as_posix().split('/'),img_paths[0].as_posix().split('/')[-5])
# dst_path = os.path.join(output_path, img_paths[0].as_posix().split('/')[-5], *sinfo) if dataset == 'GREW' else dst
os.makedirs(dst_path, exist_ok=True)
pkl_path = os.path.join(dst_path, f'{sinfo[2]}.pkl')
if verbose:
logging.debug(f'Saving {pkl_path}...')
pickle.dump(to_pickle, open(pkl_path, 'wb'))
logging.info(f'Saved {len(to_pickle)} valid frames to {pkl_path}.')
if len(to_pickle) < 5:
logging.warning(f'{sinfo} has less than 5 valid data.')
def pretreat(input_path: Path, output_path: Path, img_size: int = 64, workers: int = 4, verbose: bool = False, parsing: bool = False, dataset: str = 'CASIAB') -> None:
"""Reads a dataset and saves the data in pickle format.
Args:
input_path (Path): Dataset root path.
output_path (Path): Output path.
img_size (int, optional): Image resizing size. Defaults to 64.
workers (int, optional): Number of thread workers. Defaults to 4.
verbose (bool, optional): Display debug info. Defaults to False.
"""
img_groups = defaultdict(list)
logging.info(f'Listing {input_path}')
total_files = 0
for img_path in input_path.rglob('*.png'):
if 'gei.png' in img_path.as_posix():
continue
if verbose:
logging.debug(f'Adding {img_path}')
*_, sid, seq, view, _ = img_path.as_posix().split('/')
img_groups[(sid, seq, view)].append(img_path)
total_files += 1
logging.info(f'Total files listed: {total_files}')
progress = tqdm(total=len(img_groups), desc='Pretreating', unit='folder')
with mp.Pool(workers) as pool:
logging.info(f'Start pretreating {input_path}')
for _ in pool.imap_unordered(partial(imgs2pickle, output_path=output_path, img_size=img_size, verbose=verbose, parsing=parsing, dataset=dataset), img_groups.items()):
progress.update(1)
logging.info('Done')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='OpenGait dataset pretreatment module.')
parser.add_argument('-i', '--input_path', default='', type=str, help='Root path of raw dataset.')
parser.add_argument('-o', '--output_path', default='', type=str, help='Output path of pickled dataset.')
parser.add_argument('-l', '--log_file', default='./pretreatment.log', type=str, help='Log file path. Default: ./pretreatment.log')
parser.add_argument('-n', '--n_workers', default=4, type=int, help='Number of thread workers. Default: 4')
parser.add_argument('-r', '--img_size', default=64, type=int, help='Image resizing size. Default 64')
parser.add_argument('-d', '--dataset', default='CASIAB', type=str, help='Dataset for pretreatment.')
parser.add_argument('-v', '--verbose', default=False, action='store_true', help='Display debug info.')
parser.add_argument('-p', '--parsing', default=False, action='store_true', help='Display debug info.')
args = parser.parse_args()
logging.basicConfig(level=logging.INFO, filename=args.log_file, filemode='w', format='[%(asctime)s - %(levelname)s]: %(message)s')
if args.verbose:
logging.getLogger().setLevel(logging.DEBUG)
logging.info('Verbose mode is on.')
for k, v in args.__dict__.items():
logging.debug(f'{k}: {v}')
print(f"parsing: {args.parsing}")
pretreat(input_path=Path(args.input_path), output_path=Path(args.output_path), img_size=args.img_size, workers=args.n_workers, verbose=args.verbose, parsing=args.parsing, dataset=args.dataset)