|
a |
|
b/opengait/utils/msg_manager.py |
|
|
1 |
import time |
|
|
2 |
import torch |
|
|
3 |
|
|
|
4 |
import numpy as np |
|
|
5 |
import torchvision.utils as vutils |
|
|
6 |
import os.path as osp |
|
|
7 |
from time import strftime, localtime |
|
|
8 |
|
|
|
9 |
from torch.utils.tensorboard import SummaryWriter |
|
|
10 |
from .common import is_list, is_tensor, ts2np, mkdir, Odict, NoOp |
|
|
11 |
import logging |
|
|
12 |
|
|
|
13 |
|
|
|
14 |
class MessageManager: |
|
|
15 |
def __init__(self): |
|
|
16 |
self.info_dict = Odict() |
|
|
17 |
self.writer_hparams = ['image', 'scalar'] |
|
|
18 |
self.time = time.time() |
|
|
19 |
|
|
|
20 |
def init_manager(self, save_path, log_to_file, log_iter, iteration=0): |
|
|
21 |
self.iteration = iteration |
|
|
22 |
self.log_iter = log_iter |
|
|
23 |
mkdir(osp.join(save_path, "summary/")) |
|
|
24 |
self.writer = SummaryWriter( |
|
|
25 |
osp.join(save_path, "summary/"), purge_step=self.iteration) |
|
|
26 |
self.init_logger(save_path, log_to_file) |
|
|
27 |
|
|
|
28 |
def init_logger(self, save_path, log_to_file): |
|
|
29 |
# init logger |
|
|
30 |
self.logger = logging.getLogger('opengait') |
|
|
31 |
self.logger.setLevel(logging.INFO) |
|
|
32 |
self.logger.propagate = False |
|
|
33 |
formatter = logging.Formatter( |
|
|
34 |
fmt='[%(asctime)s] [%(levelname)s]: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') |
|
|
35 |
if log_to_file: |
|
|
36 |
mkdir(osp.join(save_path, "logs/")) |
|
|
37 |
vlog = logging.FileHandler( |
|
|
38 |
osp.join(save_path, "logs/", strftime('%Y-%m-%d-%H-%M-%S', localtime())+'.txt')) |
|
|
39 |
vlog.setLevel(logging.INFO) |
|
|
40 |
vlog.setFormatter(formatter) |
|
|
41 |
self.logger.addHandler(vlog) |
|
|
42 |
|
|
|
43 |
console = logging.StreamHandler() |
|
|
44 |
console.setFormatter(formatter) |
|
|
45 |
console.setLevel(logging.DEBUG) |
|
|
46 |
self.logger.addHandler(console) |
|
|
47 |
|
|
|
48 |
def append(self, info): |
|
|
49 |
for k, v in info.items(): |
|
|
50 |
v = [v] if not is_list(v) else v |
|
|
51 |
v = [ts2np(_) if is_tensor(_) else _ for _ in v] |
|
|
52 |
info[k] = v |
|
|
53 |
self.info_dict.append(info) |
|
|
54 |
|
|
|
55 |
def flush(self): |
|
|
56 |
self.info_dict.clear() |
|
|
57 |
self.writer.flush() |
|
|
58 |
|
|
|
59 |
def write_to_tensorboard(self, summary): |
|
|
60 |
|
|
|
61 |
for k, v in summary.items(): |
|
|
62 |
module_name = k.split('/')[0] |
|
|
63 |
if module_name not in self.writer_hparams: |
|
|
64 |
self.log_warning( |
|
|
65 |
'Not Expected --Summary-- type [{}] appear!!!{}'.format(k, self.writer_hparams)) |
|
|
66 |
continue |
|
|
67 |
board_name = k.replace(module_name + "/", '') |
|
|
68 |
writer_module = getattr(self.writer, 'add_' + module_name) |
|
|
69 |
v = v.detach() if is_tensor(v) else v |
|
|
70 |
v = vutils.make_grid( |
|
|
71 |
v, normalize=True, scale_each=True) if 'image' in module_name else v |
|
|
72 |
if module_name == 'scalar': |
|
|
73 |
try: |
|
|
74 |
v = v.mean() |
|
|
75 |
except: |
|
|
76 |
v = v |
|
|
77 |
writer_module(board_name, v, self.iteration) |
|
|
78 |
|
|
|
79 |
def log_training_info(self): |
|
|
80 |
now = time.time() |
|
|
81 |
string = "Iteration {:0>5}, Cost {:.2f}s".format( |
|
|
82 |
self.iteration, now-self.time, end="") |
|
|
83 |
for i, (k, v) in enumerate(self.info_dict.items()): |
|
|
84 |
if 'scalar' not in k: |
|
|
85 |
continue |
|
|
86 |
k = k.replace('scalar/', '').replace('/', '_') |
|
|
87 |
end = "\n" if i == len(self.info_dict)-1 else "" |
|
|
88 |
string += ", {0}={1:.4f}".format(k, np.mean(v), end=end) |
|
|
89 |
self.log_info(string) |
|
|
90 |
self.reset_time() |
|
|
91 |
|
|
|
92 |
def reset_time(self): |
|
|
93 |
self.time = time.time() |
|
|
94 |
|
|
|
95 |
def train_step(self, info, summary): |
|
|
96 |
self.iteration += 1 |
|
|
97 |
self.append(info) |
|
|
98 |
if self.iteration % self.log_iter == 0: |
|
|
99 |
self.log_training_info() |
|
|
100 |
self.flush() |
|
|
101 |
self.write_to_tensorboard(summary) |
|
|
102 |
|
|
|
103 |
def log_debug(self, *args, **kwargs): |
|
|
104 |
self.logger.debug(*args, **kwargs) |
|
|
105 |
|
|
|
106 |
def log_info(self, *args, **kwargs): |
|
|
107 |
self.logger.info(*args, **kwargs) |
|
|
108 |
|
|
|
109 |
def log_warning(self, *args, **kwargs): |
|
|
110 |
self.logger.warning(*args, **kwargs) |
|
|
111 |
|
|
|
112 |
|
|
|
113 |
msg_mgr = MessageManager() |
|
|
114 |
noop = NoOp() |
|
|
115 |
|
|
|
116 |
|
|
|
117 |
def get_msg_mgr(): |
|
|
118 |
if torch.distributed.get_rank() > 0: |
|
|
119 |
return noop |
|
|
120 |
else: |
|
|
121 |
return msg_mgr |