|
a |
|
b/opengait/modeling/modules.py |
|
|
1 |
import torch |
|
|
2 |
import numpy as np |
|
|
3 |
import torch.nn as nn |
|
|
4 |
import torch.nn.functional as F |
|
|
5 |
from utils import clones, is_list_or_tuple |
|
|
6 |
from torchvision.ops import RoIAlign |
|
|
7 |
|
|
|
8 |
|
|
|
9 |
class HorizontalPoolingPyramid(): |
|
|
10 |
""" |
|
|
11 |
Horizontal Pyramid Matching for Person Re-identification |
|
|
12 |
Arxiv: https://arxiv.org/abs/1804.05275 |
|
|
13 |
Github: https://github.com/SHI-Labs/Horizontal-Pyramid-Matching |
|
|
14 |
""" |
|
|
15 |
|
|
|
16 |
def __init__(self, bin_num=None): |
|
|
17 |
if bin_num is None: |
|
|
18 |
bin_num = [16, 8, 4, 2, 1] |
|
|
19 |
self.bin_num = bin_num |
|
|
20 |
|
|
|
21 |
def __call__(self, x): |
|
|
22 |
""" |
|
|
23 |
x : [n, c, h, w] |
|
|
24 |
ret: [n, c, p] |
|
|
25 |
""" |
|
|
26 |
n, c = x.size()[:2] |
|
|
27 |
features = [] |
|
|
28 |
for b in self.bin_num: |
|
|
29 |
z = x.view(n, c, b, -1) |
|
|
30 |
z = z.mean(-1) + z.max(-1)[0] |
|
|
31 |
features.append(z) |
|
|
32 |
return torch.cat(features, -1) |
|
|
33 |
|
|
|
34 |
|
|
|
35 |
class SetBlockWrapper(nn.Module): |
|
|
36 |
def __init__(self, forward_block): |
|
|
37 |
super(SetBlockWrapper, self).__init__() |
|
|
38 |
self.forward_block = forward_block |
|
|
39 |
|
|
|
40 |
def forward(self, x, *args, **kwargs): |
|
|
41 |
""" |
|
|
42 |
In x: [n, c_in, s, h_in, w_in] |
|
|
43 |
Out x: [n, c_out, s, h_out, w_out] |
|
|
44 |
""" |
|
|
45 |
n, c, s, h, w = x.size() |
|
|
46 |
x = self.forward_block(x.transpose( |
|
|
47 |
1, 2).reshape(-1, c, h, w), *args, **kwargs) |
|
|
48 |
output_size = x.size() |
|
|
49 |
return x.reshape(n, s, *output_size[1:]).transpose(1, 2).contiguous() |
|
|
50 |
|
|
|
51 |
|
|
|
52 |
class PackSequenceWrapper(nn.Module): |
|
|
53 |
def __init__(self, pooling_func): |
|
|
54 |
super(PackSequenceWrapper, self).__init__() |
|
|
55 |
self.pooling_func = pooling_func |
|
|
56 |
|
|
|
57 |
def forward(self, seqs, seqL, dim=2, options={}): |
|
|
58 |
""" |
|
|
59 |
In seqs: [n, c, s, ...] |
|
|
60 |
Out rets: [n, ...] |
|
|
61 |
""" |
|
|
62 |
if seqL is None: |
|
|
63 |
return self.pooling_func(seqs, **options) |
|
|
64 |
seqL = seqL[0].data.cpu().numpy().tolist() |
|
|
65 |
start = [0] + np.cumsum(seqL).tolist()[:-1] |
|
|
66 |
|
|
|
67 |
rets = [] |
|
|
68 |
for curr_start, curr_seqL in zip(start, seqL): |
|
|
69 |
narrowed_seq = seqs.narrow(dim, curr_start, curr_seqL) |
|
|
70 |
rets.append(self.pooling_func(narrowed_seq, **options)) |
|
|
71 |
if len(rets) > 0 and is_list_or_tuple(rets[0]): |
|
|
72 |
return [torch.cat([ret[j] for ret in rets]) |
|
|
73 |
for j in range(len(rets[0]))] |
|
|
74 |
return torch.cat(rets) |
|
|
75 |
|
|
|
76 |
|
|
|
77 |
class BasicConv2d(nn.Module): |
|
|
78 |
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, **kwargs): |
|
|
79 |
super(BasicConv2d, self).__init__() |
|
|
80 |
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, |
|
|
81 |
stride=stride, padding=padding, bias=False, **kwargs) |
|
|
82 |
|
|
|
83 |
def forward(self, x): |
|
|
84 |
x = self.conv(x) |
|
|
85 |
return x |
|
|
86 |
|
|
|
87 |
|
|
|
88 |
class SeparateFCs(nn.Module): |
|
|
89 |
def __init__(self, parts_num, in_channels, out_channels, norm=False): |
|
|
90 |
super(SeparateFCs, self).__init__() |
|
|
91 |
self.p = parts_num |
|
|
92 |
self.fc_bin = nn.Parameter( |
|
|
93 |
nn.init.xavier_uniform_( |
|
|
94 |
torch.zeros(parts_num, in_channels, out_channels))) |
|
|
95 |
self.norm = norm |
|
|
96 |
|
|
|
97 |
def forward(self, x): |
|
|
98 |
""" |
|
|
99 |
x: [n, c_in, p] |
|
|
100 |
out: [n, c_out, p] |
|
|
101 |
""" |
|
|
102 |
x = x.permute(2, 0, 1).contiguous() |
|
|
103 |
if self.norm: |
|
|
104 |
out = x.matmul(F.normalize(self.fc_bin, dim=1)) |
|
|
105 |
else: |
|
|
106 |
out = x.matmul(self.fc_bin) |
|
|
107 |
return out.permute(1, 2, 0).contiguous() |
|
|
108 |
|
|
|
109 |
|
|
|
110 |
class SeparateBNNecks(nn.Module): |
|
|
111 |
""" |
|
|
112 |
Bag of Tricks and a Strong Baseline for Deep Person Re-Identification |
|
|
113 |
CVPR Workshop: https://openaccess.thecvf.com/content_CVPRW_2019/papers/TRMTMCT/Luo_Bag_of_Tricks_and_a_Strong_Baseline_for_Deep_Person_CVPRW_2019_paper.pdf |
|
|
114 |
Github: https://github.com/michuanhaohao/reid-strong-baseline |
|
|
115 |
""" |
|
|
116 |
|
|
|
117 |
def __init__(self, parts_num, in_channels, class_num, norm=True, parallel_BN1d=True): |
|
|
118 |
super(SeparateBNNecks, self).__init__() |
|
|
119 |
self.p = parts_num |
|
|
120 |
self.class_num = class_num |
|
|
121 |
self.norm = norm |
|
|
122 |
self.fc_bin = nn.Parameter( |
|
|
123 |
nn.init.xavier_uniform_( |
|
|
124 |
torch.zeros(parts_num, in_channels, class_num))) |
|
|
125 |
if parallel_BN1d: |
|
|
126 |
self.bn1d = nn.BatchNorm1d(in_channels * parts_num) |
|
|
127 |
else: |
|
|
128 |
self.bn1d = clones(nn.BatchNorm1d(in_channels), parts_num) |
|
|
129 |
self.parallel_BN1d = parallel_BN1d |
|
|
130 |
|
|
|
131 |
def forward(self, x): |
|
|
132 |
""" |
|
|
133 |
x: [n, c, p] |
|
|
134 |
""" |
|
|
135 |
if self.parallel_BN1d: |
|
|
136 |
n, c, p = x.size() |
|
|
137 |
x = x.view(n, -1) # [n, c*p] |
|
|
138 |
x = self.bn1d(x) |
|
|
139 |
x = x.view(n, c, p) |
|
|
140 |
else: |
|
|
141 |
x = torch.cat([bn(_x) for _x, bn in zip( |
|
|
142 |
x.split(1, 2), self.bn1d)], 2) # [p, n, c] |
|
|
143 |
feature = x.permute(2, 0, 1).contiguous() |
|
|
144 |
if self.norm: |
|
|
145 |
feature = F.normalize(feature, dim=-1) # [p, n, c] |
|
|
146 |
logits = feature.matmul(F.normalize( |
|
|
147 |
self.fc_bin, dim=1)) # [p, n, c] |
|
|
148 |
else: |
|
|
149 |
logits = feature.matmul(self.fc_bin) |
|
|
150 |
return feature.permute(1, 2, 0).contiguous(), logits.permute(1, 2, 0).contiguous() |
|
|
151 |
|
|
|
152 |
|
|
|
153 |
class FocalConv2d(nn.Module): |
|
|
154 |
""" |
|
|
155 |
GaitPart: Temporal Part-based Model for Gait Recognition |
|
|
156 |
CVPR2020: https://openaccess.thecvf.com/content_CVPR_2020/papers/Fan_GaitPart_Temporal_Part-Based_Model_for_Gait_Recognition_CVPR_2020_paper.pdf |
|
|
157 |
Github: https://github.com/ChaoFan96/GaitPart |
|
|
158 |
""" |
|
|
159 |
def __init__(self, in_channels, out_channels, kernel_size, halving, **kwargs): |
|
|
160 |
super(FocalConv2d, self).__init__() |
|
|
161 |
self.halving = halving |
|
|
162 |
self.conv = nn.Conv2d(in_channels, out_channels, |
|
|
163 |
kernel_size, bias=False, **kwargs) |
|
|
164 |
|
|
|
165 |
def forward(self, x): |
|
|
166 |
if self.halving == 0: |
|
|
167 |
z = self.conv(x) |
|
|
168 |
else: |
|
|
169 |
h = x.size(2) |
|
|
170 |
split_size = int(h // 2**self.halving) |
|
|
171 |
z = x.split(split_size, 2) |
|
|
172 |
z = torch.cat([self.conv(_) for _ in z], 2) |
|
|
173 |
return z |
|
|
174 |
|
|
|
175 |
|
|
|
176 |
class BasicConv3d(nn.Module): |
|
|
177 |
def __init__(self, in_channels, out_channels, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False, **kwargs): |
|
|
178 |
super(BasicConv3d, self).__init__() |
|
|
179 |
self.conv3d = nn.Conv3d(in_channels, out_channels, kernel_size=kernel_size, |
|
|
180 |
stride=stride, padding=padding, bias=bias, **kwargs) |
|
|
181 |
|
|
|
182 |
def forward(self, ipts): |
|
|
183 |
''' |
|
|
184 |
ipts: [n, c, s, h, w] |
|
|
185 |
outs: [n, c, s, h, w] |
|
|
186 |
''' |
|
|
187 |
outs = self.conv3d(ipts) |
|
|
188 |
return outs |
|
|
189 |
|
|
|
190 |
|
|
|
191 |
class GaitAlign(nn.Module): |
|
|
192 |
""" |
|
|
193 |
GaitEdge: Beyond Plain End-to-end Gait Recognition for Better Practicality |
|
|
194 |
ECCV2022: https://arxiv.org/pdf/2203.03972v2.pdf |
|
|
195 |
Github: https://github.com/ShiqiYu/OpenGait/tree/master/configs/gaitedge |
|
|
196 |
""" |
|
|
197 |
def __init__(self, H=64, W=44, eps=1, **kwargs): |
|
|
198 |
super(GaitAlign, self).__init__() |
|
|
199 |
self.H, self.W, self.eps = H, W, eps |
|
|
200 |
self.Pad = nn.ZeroPad2d((int(self.W / 2), int(self.W / 2), 0, 0)) |
|
|
201 |
self.RoiPool = RoIAlign((self.H, self.W), 1, sampling_ratio=-1) |
|
|
202 |
|
|
|
203 |
def forward(self, feature_map, binary_mask, w_h_ratio): |
|
|
204 |
""" |
|
|
205 |
In sils: [n, c, h, w] |
|
|
206 |
w_h_ratio: [n, 1] |
|
|
207 |
Out aligned_sils: [n, c, H, W] |
|
|
208 |
""" |
|
|
209 |
n, c, h, w = feature_map.size() |
|
|
210 |
# w_h_ratio = w_h_ratio.repeat(1, 1) # [n, 1] |
|
|
211 |
w_h_ratio = w_h_ratio.view(-1, 1) # [n, 1] |
|
|
212 |
|
|
|
213 |
h_sum = binary_mask.sum(-1) # [n, c, h] |
|
|
214 |
_ = (h_sum >= self.eps).float().cumsum(axis=-1) # [n, c, h] |
|
|
215 |
h_top = (_ == 0).float().sum(-1) # [n, c] |
|
|
216 |
h_bot = (_ != torch.max(_, dim=-1, keepdim=True) |
|
|
217 |
[0]).float().sum(-1) + 1. # [n, c] |
|
|
218 |
|
|
|
219 |
w_sum = binary_mask.sum(-2) # [n, c, w] |
|
|
220 |
w_cumsum = w_sum.cumsum(axis=-1) # [n, c, w] |
|
|
221 |
w_h_sum = w_sum.sum(-1).unsqueeze(-1) # [n, c, 1] |
|
|
222 |
w_center = (w_cumsum < w_h_sum / 2.).float().sum(-1) # [n, c] |
|
|
223 |
|
|
|
224 |
p1 = self.W - self.H * w_h_ratio |
|
|
225 |
p1 = p1 / 2. |
|
|
226 |
p1 = torch.clamp(p1, min=0) # [n, c] |
|
|
227 |
t_w = w_h_ratio * self.H / w |
|
|
228 |
p2 = p1 / t_w # [n, c] |
|
|
229 |
|
|
|
230 |
height = h_bot - h_top # [n, c] |
|
|
231 |
width = height * w / h # [n, c] |
|
|
232 |
width_p = int(self.W / 2) |
|
|
233 |
|
|
|
234 |
feature_map = self.Pad(feature_map) |
|
|
235 |
w_center = w_center + width_p # [n, c] |
|
|
236 |
|
|
|
237 |
w_left = w_center - width / 2 - p2 # [n, c] |
|
|
238 |
w_right = w_center + width / 2 + p2 # [n, c] |
|
|
239 |
|
|
|
240 |
w_left = torch.clamp(w_left, min=0., max=w+2*width_p) |
|
|
241 |
w_right = torch.clamp(w_right, min=0., max=w+2*width_p) |
|
|
242 |
|
|
|
243 |
boxes = torch.cat([w_left, h_top, w_right, h_bot], dim=-1) |
|
|
244 |
# index of bbox in batch |
|
|
245 |
box_index = torch.arange(n, device=feature_map.device) |
|
|
246 |
rois = torch.cat([box_index.view(-1, 1), boxes], -1) |
|
|
247 |
crops = self.RoiPool(feature_map, rois) # [n, c, H, W] |
|
|
248 |
return crops |
|
|
249 |
|
|
|
250 |
|
|
|
251 |
def RmBN2dAffine(model): |
|
|
252 |
for m in model.modules(): |
|
|
253 |
if isinstance(m, nn.BatchNorm2d): |
|
|
254 |
m.weight.requires_grad = False |
|
|
255 |
m.bias.requires_grad = False |
|
|
256 |
|
|
|
257 |
|
|
|
258 |
''' |
|
|
259 |
Modifed from https://github.com/BNU-IVC/FastPoseGait/blob/main/fastposegait/modeling/components/units |
|
|
260 |
''' |
|
|
261 |
|
|
|
262 |
class Graph(): |
|
|
263 |
""" |
|
|
264 |
# Thanks to YAN Sijie for the released code on Github (https://github.com/yysijie/st-gcn) |
|
|
265 |
""" |
|
|
266 |
def __init__(self, joint_format='coco', max_hop=2, dilation=1): |
|
|
267 |
self.joint_format = joint_format |
|
|
268 |
self.max_hop = max_hop |
|
|
269 |
self.dilation = dilation |
|
|
270 |
|
|
|
271 |
# get edges |
|
|
272 |
self.num_node, self.edge, self.connect_joint, self.parts = self._get_edge() |
|
|
273 |
|
|
|
274 |
# get adjacency matrix |
|
|
275 |
self.A = self._get_adjacency() |
|
|
276 |
|
|
|
277 |
def __str__(self): |
|
|
278 |
return self.A |
|
|
279 |
|
|
|
280 |
def _get_edge(self): |
|
|
281 |
if self.joint_format == 'coco': |
|
|
282 |
# keypoints = { |
|
|
283 |
# 0: "nose", |
|
|
284 |
# 1: "left_eye", |
|
|
285 |
# 2: "right_eye", |
|
|
286 |
# 3: "left_ear", |
|
|
287 |
# 4: "right_ear", |
|
|
288 |
# 5: "left_shoulder", |
|
|
289 |
# 6: "right_shoulder", |
|
|
290 |
# 7: "left_elbow", |
|
|
291 |
# 8: "right_elbow", |
|
|
292 |
# 9: "left_wrist", |
|
|
293 |
# 10: "right_wrist", |
|
|
294 |
# 11: "left_hip", |
|
|
295 |
# 12: "right_hip", |
|
|
296 |
# 13: "left_knee", |
|
|
297 |
# 14: "right_knee", |
|
|
298 |
# 15: "left_ankle", |
|
|
299 |
# 16: "right_ankle" |
|
|
300 |
# } |
|
|
301 |
num_node = 17 |
|
|
302 |
self_link = [(i, i) for i in range(num_node)] |
|
|
303 |
neighbor_link = [(0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 6), |
|
|
304 |
(5, 7), (7, 9), (6, 8), (8, 10), (5, 11), (6, 12), (11, 12), |
|
|
305 |
(11, 13), (13, 15), (12, 14), (14, 16)] |
|
|
306 |
self.edge = self_link + neighbor_link |
|
|
307 |
self.center = 0 |
|
|
308 |
self.flip_idx = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] |
|
|
309 |
connect_joint = np.array([5,0,0,1,2,0,0,5,6,7,8,5,6,11,12,13,14]) |
|
|
310 |
parts = [ |
|
|
311 |
np.array([5, 7, 9]), # left_arm |
|
|
312 |
np.array([6, 8, 10]), # right_arm |
|
|
313 |
np.array([11, 13, 15]), # left_leg |
|
|
314 |
np.array([12, 14, 16]), # right_leg |
|
|
315 |
np.array([0, 1, 2, 3, 4]), # head |
|
|
316 |
] |
|
|
317 |
|
|
|
318 |
elif self.joint_format == 'coco-no-head': |
|
|
319 |
num_node = 12 |
|
|
320 |
self_link = [(i, i) for i in range(num_node)] |
|
|
321 |
neighbor_link = [(0, 1), |
|
|
322 |
(0, 2), (2, 4), (1, 3), (3, 5), (0, 6), (1, 7), (6, 7), |
|
|
323 |
(6, 8), (8, 10), (7, 9), (9, 11)] |
|
|
324 |
self.edge = self_link + neighbor_link |
|
|
325 |
self.center = 0 |
|
|
326 |
connect_joint = np.array([3,1,0,2,4,0,6,8,10,7,9,11]) |
|
|
327 |
parts =[ |
|
|
328 |
np.array([0, 2, 4]), # left_arm |
|
|
329 |
np.array([1, 3, 5]), # right_arm |
|
|
330 |
np.array([6, 8, 10]), # left_leg |
|
|
331 |
np.array([7, 9, 11]) # right_leg |
|
|
332 |
] |
|
|
333 |
|
|
|
334 |
elif self.joint_format =='alphapose' or self.joint_format =='openpose': |
|
|
335 |
num_node = 18 |
|
|
336 |
self_link = [(i, i) for i in range(num_node)] |
|
|
337 |
neighbor_link = [(0, 1), (0, 14), (0, 15), (14, 16), (15, 17), |
|
|
338 |
(1, 2), (2, 3), (3, 4), (1, 5), (5, 6), (6, 7), |
|
|
339 |
(1, 8), (8, 9), (9, 10), (1, 11), (11, 12), (12, 13)] |
|
|
340 |
self.edge = self_link + neighbor_link |
|
|
341 |
self.center = 1 |
|
|
342 |
self.flip_idx = [0, 1, 5, 6, 7, 2, 3, 4, 11, 12, 13, 8, 9, 10, 15, 14, 17, 16] |
|
|
343 |
connect_joint = np.array([1,1,1,2,3,1,5,6,2,8,9,5,11,12,0,0,14,15]) |
|
|
344 |
parts = [ |
|
|
345 |
np.array([5, 6, 7]), # left_arm |
|
|
346 |
np.array([2, 3, 4]), # right_arm |
|
|
347 |
np.array([11, 12, 13]), # left_leg |
|
|
348 |
np.array([8, 9, 10]), # right_leg |
|
|
349 |
np.array([0, 1, 14, 15, 16, 17]), # head |
|
|
350 |
] |
|
|
351 |
|
|
|
352 |
else: |
|
|
353 |
num_node, neighbor_link, connect_joint, parts = 0, [], [], [] |
|
|
354 |
raise ValueError('Error: Do NOT exist this dataset: {}!'.format(self.dataset)) |
|
|
355 |
self_link = [(i, i) for i in range(num_node)] |
|
|
356 |
edge = self_link + neighbor_link |
|
|
357 |
return num_node, edge, connect_joint, parts |
|
|
358 |
|
|
|
359 |
def _get_hop_distance(self): |
|
|
360 |
A = np.zeros((self.num_node, self.num_node)) |
|
|
361 |
for i, j in self.edge: |
|
|
362 |
A[j, i] = 1 |
|
|
363 |
A[i, j] = 1 |
|
|
364 |
hop_dis = np.zeros((self.num_node, self.num_node)) + np.inf |
|
|
365 |
transfer_mat = [np.linalg.matrix_power(A, d) for d in range(self.max_hop + 1)] |
|
|
366 |
arrive_mat = (np.stack(transfer_mat) > 0) |
|
|
367 |
for d in range(self.max_hop, -1, -1): |
|
|
368 |
hop_dis[arrive_mat[d]] = d |
|
|
369 |
return hop_dis |
|
|
370 |
|
|
|
371 |
def _get_adjacency(self): |
|
|
372 |
hop_dis = self._get_hop_distance() |
|
|
373 |
valid_hop = range(0, self.max_hop + 1, self.dilation) |
|
|
374 |
adjacency = np.zeros((self.num_node, self.num_node)) |
|
|
375 |
for hop in valid_hop: |
|
|
376 |
adjacency[hop_dis == hop] = 1 |
|
|
377 |
normalize_adjacency = self._normalize_digraph(adjacency) |
|
|
378 |
A = np.zeros((len(valid_hop), self.num_node, self.num_node)) |
|
|
379 |
for i, hop in enumerate(valid_hop): |
|
|
380 |
A[i][hop_dis == hop] = normalize_adjacency[hop_dis == hop] |
|
|
381 |
return A |
|
|
382 |
|
|
|
383 |
def _normalize_digraph(self, A): |
|
|
384 |
Dl = np.sum(A, 0) |
|
|
385 |
num_node = A.shape[0] |
|
|
386 |
Dn = np.zeros((num_node, num_node)) |
|
|
387 |
for i in range(num_node): |
|
|
388 |
if Dl[i] > 0: |
|
|
389 |
Dn[i, i] = Dl[i]**(-1) |
|
|
390 |
AD = np.dot(A, Dn) |
|
|
391 |
return AD |
|
|
392 |
|
|
|
393 |
|
|
|
394 |
class TemporalBasicBlock(nn.Module): |
|
|
395 |
""" |
|
|
396 |
TemporalConv_Res_Block |
|
|
397 |
Arxiv: https://arxiv.org/abs/2010.09978 |
|
|
398 |
Github: https://github.com/Thomas-yx/ResGCNv1 |
|
|
399 |
""" |
|
|
400 |
def __init__(self, channels, temporal_window_size, stride=1, residual=False,reduction=0,get_res=False,tcn_stride=False): |
|
|
401 |
super(TemporalBasicBlock, self).__init__() |
|
|
402 |
|
|
|
403 |
padding = ((temporal_window_size - 1) // 2, 0) |
|
|
404 |
|
|
|
405 |
if not residual: |
|
|
406 |
self.residual = lambda x: 0 |
|
|
407 |
elif stride == 1: |
|
|
408 |
self.residual = lambda x: x |
|
|
409 |
else: |
|
|
410 |
self.residual = nn.Sequential( |
|
|
411 |
nn.Conv2d(channels, channels, 1, (stride,1)), |
|
|
412 |
nn.BatchNorm2d(channels), |
|
|
413 |
) |
|
|
414 |
|
|
|
415 |
self.conv = nn.Conv2d(channels, channels, (temporal_window_size,1), (stride,1), padding) |
|
|
416 |
self.bn = nn.BatchNorm2d(channels) |
|
|
417 |
self.relu = nn.ReLU(inplace=True) |
|
|
418 |
|
|
|
419 |
def forward(self, x, res_module): |
|
|
420 |
|
|
|
421 |
res_block = self.residual(x) |
|
|
422 |
|
|
|
423 |
x = self.conv(x) |
|
|
424 |
x = self.bn(x) |
|
|
425 |
x = self.relu(x + res_block + res_module) |
|
|
426 |
|
|
|
427 |
return x |
|
|
428 |
|
|
|
429 |
|
|
|
430 |
class TemporalBottleneckBlock(nn.Module): |
|
|
431 |
""" |
|
|
432 |
TemporalConv_Res_Bottleneck |
|
|
433 |
Arxiv: https://arxiv.org/abs/2010.09978 |
|
|
434 |
Github: https://github.com/Thomas-yx/ResGCNv1 |
|
|
435 |
""" |
|
|
436 |
def __init__(self, channels, temporal_window_size, stride=1, residual=False, reduction=4,get_res=False, tcn_stride=False): |
|
|
437 |
super(TemporalBottleneckBlock, self).__init__() |
|
|
438 |
tcn_stride =False |
|
|
439 |
padding = ((temporal_window_size - 1) // 2, 0) |
|
|
440 |
inter_channels = channels // reduction |
|
|
441 |
if get_res: |
|
|
442 |
if tcn_stride: |
|
|
443 |
stride =2 |
|
|
444 |
self.residual = nn.Sequential( |
|
|
445 |
nn.Conv2d(channels, channels, 1, (2,1)), |
|
|
446 |
nn.BatchNorm2d(channels), |
|
|
447 |
) |
|
|
448 |
tcn_stride= True |
|
|
449 |
else: |
|
|
450 |
if not residual: |
|
|
451 |
self.residual = lambda x: 0 |
|
|
452 |
elif stride == 1: |
|
|
453 |
self.residual = lambda x: x |
|
|
454 |
else: |
|
|
455 |
self.residual = nn.Sequential( |
|
|
456 |
nn.Conv2d(channels, channels, 1, (2,1)), |
|
|
457 |
nn.BatchNorm2d(channels), |
|
|
458 |
) |
|
|
459 |
tcn_stride= True |
|
|
460 |
|
|
|
461 |
self.conv_down = nn.Conv2d(channels, inter_channels, 1) |
|
|
462 |
self.bn_down = nn.BatchNorm2d(inter_channels) |
|
|
463 |
if tcn_stride: |
|
|
464 |
stride=2 |
|
|
465 |
self.conv = nn.Conv2d(inter_channels, inter_channels, (temporal_window_size,1), (stride,1), padding) |
|
|
466 |
self.bn = nn.BatchNorm2d(inter_channels) |
|
|
467 |
self.conv_up = nn.Conv2d(inter_channels, channels, 1) |
|
|
468 |
self.bn_up = nn.BatchNorm2d(channels) |
|
|
469 |
self.relu = nn.ReLU(inplace=True) |
|
|
470 |
|
|
|
471 |
def forward(self, x, res_module): |
|
|
472 |
|
|
|
473 |
res_block = self.residual(x) |
|
|
474 |
|
|
|
475 |
x = self.conv_down(x) |
|
|
476 |
x = self.bn_down(x) |
|
|
477 |
x = self.relu(x) |
|
|
478 |
|
|
|
479 |
x = self.conv(x) |
|
|
480 |
x = self.bn(x) |
|
|
481 |
x = self.relu(x) |
|
|
482 |
|
|
|
483 |
x = self.conv_up(x) |
|
|
484 |
x = self.bn_up(x) |
|
|
485 |
x = self.relu(x + res_block + res_module) |
|
|
486 |
return x |
|
|
487 |
|
|
|
488 |
|
|
|
489 |
|
|
|
490 |
class SpatialGraphConv(nn.Module): |
|
|
491 |
""" |
|
|
492 |
SpatialGraphConv_Basic_Block |
|
|
493 |
Arxiv: https://arxiv.org/abs/1801.07455 |
|
|
494 |
Github: https://github.com/yysijie/st-gcn |
|
|
495 |
""" |
|
|
496 |
def __init__(self, in_channels, out_channels, max_graph_distance): |
|
|
497 |
super(SpatialGraphConv, self).__init__() |
|
|
498 |
|
|
|
499 |
# spatial class number (distance = 0 for class 0, distance = 1 for class 1, ...) |
|
|
500 |
self.s_kernel_size = max_graph_distance + 1 |
|
|
501 |
|
|
|
502 |
# weights of different spatial classes |
|
|
503 |
self.gcn = nn.Conv2d(in_channels, out_channels*self.s_kernel_size, 1) |
|
|
504 |
|
|
|
505 |
def forward(self, x, A): |
|
|
506 |
|
|
|
507 |
# numbers in same class have same weight |
|
|
508 |
x = self.gcn(x) |
|
|
509 |
|
|
|
510 |
# divide nodes into different classes |
|
|
511 |
n, kc, t, v = x.size() |
|
|
512 |
x = x.view(n, self.s_kernel_size, kc//self.s_kernel_size, t, v).contiguous() |
|
|
513 |
|
|
|
514 |
# spatial graph convolution |
|
|
515 |
x = torch.einsum('nkctv,kvw->nctw', (x, A[:self.s_kernel_size])).contiguous() |
|
|
516 |
|
|
|
517 |
return x |
|
|
518 |
|
|
|
519 |
class SpatialBasicBlock(nn.Module): |
|
|
520 |
""" |
|
|
521 |
SpatialGraphConv_Res_Block |
|
|
522 |
Arxiv: https://arxiv.org/abs/2010.09978 |
|
|
523 |
Github: https://github.com/Thomas-yx/ResGCNv1 |
|
|
524 |
""" |
|
|
525 |
def __init__(self, in_channels, out_channels, max_graph_distance, residual=False,reduction=0): |
|
|
526 |
super(SpatialBasicBlock, self).__init__() |
|
|
527 |
|
|
|
528 |
if not residual: |
|
|
529 |
self.residual = lambda x: 0 |
|
|
530 |
elif in_channels == out_channels: |
|
|
531 |
self.residual = lambda x: x |
|
|
532 |
else: |
|
|
533 |
self.residual = nn.Sequential( |
|
|
534 |
nn.Conv2d(in_channels, out_channels, 1), |
|
|
535 |
nn.BatchNorm2d(out_channels), |
|
|
536 |
) |
|
|
537 |
|
|
|
538 |
self.conv = SpatialGraphConv(in_channels, out_channels, max_graph_distance) |
|
|
539 |
self.bn = nn.BatchNorm2d(out_channels) |
|
|
540 |
self.relu = nn.ReLU(inplace=True) |
|
|
541 |
|
|
|
542 |
def forward(self, x, A): |
|
|
543 |
|
|
|
544 |
res_block = self.residual(x) |
|
|
545 |
|
|
|
546 |
x = self.conv(x, A) |
|
|
547 |
x = self.bn(x) |
|
|
548 |
x = self.relu(x + res_block) |
|
|
549 |
|
|
|
550 |
return x |
|
|
551 |
|
|
|
552 |
class SpatialBottleneckBlock(nn.Module): |
|
|
553 |
""" |
|
|
554 |
SpatialGraphConv_Res_Bottleneck |
|
|
555 |
Arxiv: https://arxiv.org/abs/2010.09978 |
|
|
556 |
Github: https://github.com/Thomas-yx/ResGCNv1 |
|
|
557 |
""" |
|
|
558 |
|
|
|
559 |
def __init__(self, in_channels, out_channels, max_graph_distance, residual=False, reduction=4): |
|
|
560 |
super(SpatialBottleneckBlock, self).__init__() |
|
|
561 |
|
|
|
562 |
inter_channels = out_channels // reduction |
|
|
563 |
|
|
|
564 |
if not residual: |
|
|
565 |
self.residual = lambda x: 0 |
|
|
566 |
elif in_channels == out_channels: |
|
|
567 |
self.residual = lambda x: x |
|
|
568 |
else: |
|
|
569 |
self.residual = nn.Sequential( |
|
|
570 |
nn.Conv2d(in_channels, out_channels, 1), |
|
|
571 |
nn.BatchNorm2d(out_channels), |
|
|
572 |
) |
|
|
573 |
|
|
|
574 |
self.conv_down = nn.Conv2d(in_channels, inter_channels, 1) |
|
|
575 |
self.bn_down = nn.BatchNorm2d(inter_channels) |
|
|
576 |
self.conv = SpatialGraphConv(inter_channels, inter_channels, max_graph_distance) |
|
|
577 |
self.bn = nn.BatchNorm2d(inter_channels) |
|
|
578 |
self.conv_up = nn.Conv2d(inter_channels, out_channels, 1) |
|
|
579 |
self.bn_up = nn.BatchNorm2d(out_channels) |
|
|
580 |
self.relu = nn.ReLU(inplace=True) |
|
|
581 |
|
|
|
582 |
def forward(self, x, A): |
|
|
583 |
|
|
|
584 |
res_block = self.residual(x) |
|
|
585 |
|
|
|
586 |
x = self.conv_down(x) |
|
|
587 |
x = self.bn_down(x) |
|
|
588 |
x = self.relu(x) |
|
|
589 |
|
|
|
590 |
x = self.conv(x, A) |
|
|
591 |
x = self.bn(x) |
|
|
592 |
x = self.relu(x) |
|
|
593 |
|
|
|
594 |
x = self.conv_up(x) |
|
|
595 |
x = self.bn_up(x) |
|
|
596 |
x = self.relu(x + res_block) |
|
|
597 |
|
|
|
598 |
return x |
|
|
599 |
|
|
|
600 |
class SpatialAttention(nn.Module): |
|
|
601 |
""" |
|
|
602 |
This class implements Spatial Transformer. |
|
|
603 |
Function adapted from: https://github.com/leaderj1001/Attention-Augmented-Conv2d |
|
|
604 |
""" |
|
|
605 |
def __init__(self, in_channels, out_channel, A, num_point, dk_factor=0.25, kernel_size=1, Nh=8, num=4, stride=1): |
|
|
606 |
super(SpatialAttention, self).__init__() |
|
|
607 |
self.in_channels = in_channels |
|
|
608 |
self.kernel_size = kernel_size |
|
|
609 |
self.dk = int(dk_factor * out_channel) |
|
|
610 |
self.dv = int(out_channel) |
|
|
611 |
self.num = num |
|
|
612 |
self.Nh = Nh |
|
|
613 |
self.num_point=num_point |
|
|
614 |
self.A = A[0] + A[1] + A[2] |
|
|
615 |
self.stride = stride |
|
|
616 |
self.padding = (self.kernel_size - 1) // 2 |
|
|
617 |
|
|
|
618 |
assert self.Nh != 0, "integer division or modulo by zero, Nh >= 1" |
|
|
619 |
assert self.dk % self.Nh == 0, "dk should be divided by Nh. (example: out_channels: 20, dk: 40, Nh: 4)" |
|
|
620 |
assert self.dv % self.Nh == 0, "dv should be divided by Nh. (example: out_channels: 20, dv: 4, Nh: 4)" |
|
|
621 |
assert stride in [1, 2], str(stride) + " Up to 2 strides are allowed." |
|
|
622 |
|
|
|
623 |
self.qkv_conv = nn.Conv2d(self.in_channels, 2 * self.dk + self.dv, kernel_size=self.kernel_size, |
|
|
624 |
stride=stride, |
|
|
625 |
padding=self.padding) |
|
|
626 |
|
|
|
627 |
self.attn_out = nn.Conv2d(self.dv, self.dv, kernel_size=1, stride=1) |
|
|
628 |
|
|
|
629 |
def forward(self, x): |
|
|
630 |
# Input x |
|
|
631 |
# (batch_size, channels, 1, joints) |
|
|
632 |
B, _, T, V = x.size() |
|
|
633 |
|
|
|
634 |
# flat_q, flat_k, flat_v |
|
|
635 |
# (batch_size, Nh, dvh or dkh, joints) |
|
|
636 |
# dvh = dv / Nh, dkh = dk / Nh |
|
|
637 |
# q, k, v obtained by doing 2D convolution on the input (q=XWq, k=XWk, v=XWv) |
|
|
638 |
flat_q, flat_k, flat_v, q, k, v = self.compute_flat_qkv(x, self.dk, self.dv, self.Nh) |
|
|
639 |
|
|
|
640 |
# Calculate the scores, obtained by doing q*k |
|
|
641 |
# (batch_size, Nh, joints, dkh)*(batch_size, Nh, dkh, joints) = (batch_size, Nh, joints,joints) |
|
|
642 |
# The multiplication can also be divided (multi_matmul) in case of space problems |
|
|
643 |
|
|
|
644 |
logits = torch.matmul(flat_q.transpose(2, 3), flat_k) |
|
|
645 |
|
|
|
646 |
weights = F.softmax(logits, dim=-1) |
|
|
647 |
|
|
|
648 |
# attn_out |
|
|
649 |
# (batch, Nh, joints, dvh) |
|
|
650 |
# weights*V |
|
|
651 |
# (batch, Nh, joints, joints)*(batch, Nh, joints, dvh)=(batch, Nh, joints, dvh) |
|
|
652 |
attn_out = torch.matmul(weights, flat_v.transpose(2, 3)) |
|
|
653 |
|
|
|
654 |
attn_out = torch.reshape(attn_out, (B, self.Nh, T, V, self.dv // self.Nh)) |
|
|
655 |
|
|
|
656 |
attn_out = attn_out.permute(0, 1, 4, 2, 3) |
|
|
657 |
|
|
|
658 |
# combine_heads_2d, combine heads only after having calculated each Z separately |
|
|
659 |
# (batch, Nh*dv, 1, joints) |
|
|
660 |
attn_out = self.combine_heads_2d(attn_out) |
|
|
661 |
|
|
|
662 |
# Multiply for W0 (batch, out_channels, 1, joints) with out_channels=dv |
|
|
663 |
attn_out = self.attn_out(attn_out) |
|
|
664 |
return attn_out |
|
|
665 |
|
|
|
666 |
def compute_flat_qkv(self, x, dk, dv, Nh): |
|
|
667 |
qkv = self.qkv_conv(x) |
|
|
668 |
# T=1 in this case, because we are considering each frame separately |
|
|
669 |
N, _, T, V = qkv.size() |
|
|
670 |
|
|
|
671 |
q, k, v = torch.split(qkv, [dk, dk, dv], dim=1) |
|
|
672 |
q = self.split_heads_2d(q, Nh) |
|
|
673 |
k = self.split_heads_2d(k, Nh) |
|
|
674 |
v = self.split_heads_2d(v, Nh) |
|
|
675 |
|
|
|
676 |
dkh = dk // Nh |
|
|
677 |
q = q*(dkh ** -0.5) |
|
|
678 |
flat_q = torch.reshape(q, (N, Nh, dkh, T * V)) |
|
|
679 |
flat_k = torch.reshape(k, (N, Nh, dkh, T * V)) |
|
|
680 |
flat_v = torch.reshape(v, (N, Nh, dv // self.Nh, T * V)) |
|
|
681 |
return flat_q, flat_k, flat_v, q, k, v |
|
|
682 |
|
|
|
683 |
def split_heads_2d(self, x, Nh): |
|
|
684 |
B, channels, T, V = x.size() |
|
|
685 |
ret_shape = (B, Nh, channels // Nh, T, V) |
|
|
686 |
split = torch.reshape(x, ret_shape) |
|
|
687 |
return split |
|
|
688 |
|
|
|
689 |
def combine_heads_2d(self, x): |
|
|
690 |
batch, Nh, dv, T, V = x.size() |
|
|
691 |
ret_shape = (batch, Nh * dv, T, V) |
|
|
692 |
return torch.reshape(x, ret_shape) |
|
|
693 |
|
|
|
694 |
from einops import rearrange |
|
|
695 |
class ParallelBN1d(nn.Module): |
|
|
696 |
def __init__(self, parts_num, in_channels, **kwargs): |
|
|
697 |
super(ParallelBN1d, self).__init__() |
|
|
698 |
self.parts_num = parts_num |
|
|
699 |
self.bn1d = nn.BatchNorm1d(in_channels * parts_num, **kwargs) |
|
|
700 |
|
|
|
701 |
def forward(self, x): |
|
|
702 |
''' |
|
|
703 |
x: [n, c, p] |
|
|
704 |
''' |
|
|
705 |
x = rearrange(x, 'n c p -> n (c p)') |
|
|
706 |
x = self.bn1d(x) |
|
|
707 |
x = rearrange(x, 'n (c p) -> n c p', p=self.parts_num) |
|
|
708 |
return x |
|
|
709 |
|
|
|
710 |
|
|
|
711 |
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): |
|
|
712 |
"""3x3 convolution with padding""" |
|
|
713 |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
|
714 |
padding=dilation, groups=groups, bias=False, dilation=dilation) |
|
|
715 |
|
|
|
716 |
def conv1x1(in_planes, out_planes, stride=1): |
|
|
717 |
"""1x1 convolution""" |
|
|
718 |
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
719 |
|
|
|
720 |
class BasicBlock2D(nn.Module): |
|
|
721 |
expansion = 1 |
|
|
722 |
|
|
|
723 |
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, |
|
|
724 |
base_width=64, dilation=1, norm_layer=None): |
|
|
725 |
super(BasicBlock2D, self).__init__() |
|
|
726 |
if norm_layer is None: |
|
|
727 |
norm_layer = nn.BatchNorm2d |
|
|
728 |
if groups != 1 or base_width != 64: |
|
|
729 |
raise ValueError( |
|
|
730 |
'BasicBlock only supports groups=1 and base_width=64') |
|
|
731 |
if dilation > 1: |
|
|
732 |
raise NotImplementedError( |
|
|
733 |
"Dilation > 1 not supported in BasicBlock") |
|
|
734 |
# Both self.conv1 and self.downsample layers downsample the input when stride != 1 |
|
|
735 |
self.conv1 = conv3x3(inplanes, planes, stride) |
|
|
736 |
self.bn1 = norm_layer(planes) |
|
|
737 |
self.relu = nn.ReLU(inplace=True) |
|
|
738 |
self.conv2 = conv3x3(planes, planes) |
|
|
739 |
self.bn2 = norm_layer(planes) |
|
|
740 |
self.downsample = downsample |
|
|
741 |
self.stride = stride |
|
|
742 |
|
|
|
743 |
def forward(self, x): |
|
|
744 |
identity = x |
|
|
745 |
|
|
|
746 |
out = self.conv1(x) |
|
|
747 |
out = self.bn1(out) |
|
|
748 |
out = self.relu(out) |
|
|
749 |
|
|
|
750 |
out = self.conv2(out) |
|
|
751 |
out = self.bn2(out) |
|
|
752 |
|
|
|
753 |
if self.downsample is not None: |
|
|
754 |
identity = self.downsample(x) |
|
|
755 |
|
|
|
756 |
out += identity |
|
|
757 |
out = self.relu(out) |
|
|
758 |
|
|
|
759 |
return out |
|
|
760 |
|
|
|
761 |
class BasicBlockP3D(nn.Module): |
|
|
762 |
expansion = 1 |
|
|
763 |
|
|
|
764 |
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, |
|
|
765 |
base_width=64, dilation=1, norm_layer=None): |
|
|
766 |
super(BasicBlockP3D, self).__init__() |
|
|
767 |
if norm_layer is None: |
|
|
768 |
norm_layer2d = nn.BatchNorm2d |
|
|
769 |
norm_layer3d = nn.BatchNorm3d |
|
|
770 |
if groups != 1 or base_width != 64: |
|
|
771 |
raise ValueError( |
|
|
772 |
'BasicBlock only supports groups=1 and base_width=64') |
|
|
773 |
if dilation > 1: |
|
|
774 |
raise NotImplementedError( |
|
|
775 |
"Dilation > 1 not supported in BasicBlock") |
|
|
776 |
# Both self.conv1 and self.downsample layers downsample the input when stride != 1 |
|
|
777 |
self.relu = nn.ReLU(inplace=True) |
|
|
778 |
|
|
|
779 |
self.conv1 = SetBlockWrapper( |
|
|
780 |
nn.Sequential( |
|
|
781 |
conv3x3(inplanes, planes, stride), |
|
|
782 |
norm_layer2d(planes), |
|
|
783 |
nn.ReLU(inplace=True) |
|
|
784 |
) |
|
|
785 |
) |
|
|
786 |
|
|
|
787 |
self.conv2 = SetBlockWrapper( |
|
|
788 |
nn.Sequential( |
|
|
789 |
conv3x3(planes, planes), |
|
|
790 |
norm_layer2d(planes), |
|
|
791 |
) |
|
|
792 |
) |
|
|
793 |
|
|
|
794 |
self.shortcut3d = nn.Conv3d(planes, planes, (3, 1, 1), (1, 1, 1), (1, 0, 0), bias=False) |
|
|
795 |
self.sbn = norm_layer3d(planes) |
|
|
796 |
|
|
|
797 |
self.downsample = downsample |
|
|
798 |
|
|
|
799 |
def forward(self, x): |
|
|
800 |
''' |
|
|
801 |
x: [n, c, s, h, w] |
|
|
802 |
''' |
|
|
803 |
identity = x |
|
|
804 |
|
|
|
805 |
out = self.conv1(x) |
|
|
806 |
out = self.relu(out + self.sbn(self.shortcut3d(out))) |
|
|
807 |
out = self.conv2(out) |
|
|
808 |
|
|
|
809 |
if self.downsample is not None: |
|
|
810 |
identity = self.downsample(x) |
|
|
811 |
|
|
|
812 |
out += identity |
|
|
813 |
out = self.relu(out) |
|
|
814 |
|
|
|
815 |
return out |
|
|
816 |
|
|
|
817 |
class BasicBlock3D(nn.Module): |
|
|
818 |
expansion = 1 |
|
|
819 |
|
|
|
820 |
def __init__(self, inplanes, planes, stride=[1, 1, 1], downsample=None, groups=1, |
|
|
821 |
base_width=64, dilation=1, norm_layer=None): |
|
|
822 |
super(BasicBlock3D, self).__init__() |
|
|
823 |
if norm_layer is None: |
|
|
824 |
norm_layer = nn.BatchNorm3d |
|
|
825 |
if groups != 1 or base_width != 64: |
|
|
826 |
raise ValueError( |
|
|
827 |
'BasicBlock only supports groups=1 and base_width=64') |
|
|
828 |
if dilation > 1: |
|
|
829 |
raise NotImplementedError( |
|
|
830 |
"Dilation > 1 not supported in BasicBlock") |
|
|
831 |
# Both self.conv1 and self.downsample layers downsample the input when stride != 1 |
|
|
832 |
assert stride[0] in [1, 2, 3] |
|
|
833 |
if stride[0] in [1, 2]: |
|
|
834 |
tp = 1 |
|
|
835 |
else: |
|
|
836 |
tp = 0 |
|
|
837 |
self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=(3, 3, 3), stride=stride, padding=[tp, 1, 1], bias=False) |
|
|
838 |
self.bn1 = norm_layer(planes) |
|
|
839 |
self.relu = nn.ReLU(inplace=True) |
|
|
840 |
self.conv2 = nn.Conv3d(planes, planes, kernel_size=(3, 3, 3), stride=[1, 1, 1], padding=[1, 1, 1], bias=False) |
|
|
841 |
self.bn2 = norm_layer(planes) |
|
|
842 |
self.downsample = downsample |
|
|
843 |
|
|
|
844 |
def forward(self, x): |
|
|
845 |
''' |
|
|
846 |
x: [n, c, s, h, w] |
|
|
847 |
''' |
|
|
848 |
identity = x |
|
|
849 |
|
|
|
850 |
out = self.conv1(x) |
|
|
851 |
out = self.bn1(out) |
|
|
852 |
out = self.relu(out) |
|
|
853 |
|
|
|
854 |
out = self.conv2(out) |
|
|
855 |
out = self.bn2(out) |
|
|
856 |
|
|
|
857 |
if self.downsample is not None: |
|
|
858 |
identity = self.downsample(x) |
|
|
859 |
|
|
|
860 |
out += identity |
|
|
861 |
out = self.relu(out) |
|
|
862 |
|
|
|
863 |
return out |