|
a |
|
b/opengait/modeling/models/gln.py |
|
|
1 |
import torch |
|
|
2 |
import copy |
|
|
3 |
import torch.nn as nn |
|
|
4 |
import torch.nn.functional as F |
|
|
5 |
|
|
|
6 |
from ..base_model import BaseModel |
|
|
7 |
from ..modules import SeparateFCs, BasicConv2d, SetBlockWrapper, HorizontalPoolingPyramid, PackSequenceWrapper |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
class GLN(BaseModel): |
|
|
11 |
""" |
|
|
12 |
http://home.ustc.edu.cn/~saihui/papers/eccv2020_gln.pdf |
|
|
13 |
Gait Lateral Network: Learning Discriminative and Compact Representations for Gait Recognition |
|
|
14 |
""" |
|
|
15 |
|
|
|
16 |
def build_network(self, model_cfg): |
|
|
17 |
in_channels = model_cfg['in_channels'] |
|
|
18 |
self.bin_num = model_cfg['bin_num'] |
|
|
19 |
self.hidden_dim = model_cfg['hidden_dim'] |
|
|
20 |
lateral_dim = model_cfg['lateral_dim'] |
|
|
21 |
reduce_dim = self.hidden_dim |
|
|
22 |
self.pretrain = model_cfg['Lateral_pretraining'] |
|
|
23 |
|
|
|
24 |
self.sil_stage_0 = nn.Sequential(BasicConv2d(in_channels[0], in_channels[1], 5, 1, 2), |
|
|
25 |
nn.LeakyReLU(inplace=True), |
|
|
26 |
BasicConv2d( |
|
|
27 |
in_channels[1], in_channels[1], 3, 1, 1), |
|
|
28 |
nn.LeakyReLU(inplace=True)) |
|
|
29 |
|
|
|
30 |
self.sil_stage_1 = nn.Sequential(BasicConv2d(in_channels[1], in_channels[2], 3, 1, 1), |
|
|
31 |
nn.LeakyReLU(inplace=True), |
|
|
32 |
BasicConv2d( |
|
|
33 |
in_channels[2], in_channels[2], 3, 1, 1), |
|
|
34 |
nn.LeakyReLU(inplace=True)) |
|
|
35 |
|
|
|
36 |
self.sil_stage_2 = nn.Sequential(BasicConv2d(in_channels[2], in_channels[3], 3, 1, 1), |
|
|
37 |
nn.LeakyReLU(inplace=True), |
|
|
38 |
BasicConv2d( |
|
|
39 |
in_channels[3], in_channels[3], 3, 1, 1), |
|
|
40 |
nn.LeakyReLU(inplace=True)) |
|
|
41 |
|
|
|
42 |
self.set_stage_1 = copy.deepcopy(self.sil_stage_1) |
|
|
43 |
self.set_stage_2 = copy.deepcopy(self.sil_stage_2) |
|
|
44 |
|
|
|
45 |
self.set_pooling = PackSequenceWrapper(torch.max) |
|
|
46 |
|
|
|
47 |
self.MaxP_sil = SetBlockWrapper(nn.MaxPool2d(kernel_size=2, stride=2)) |
|
|
48 |
self.MaxP_set = nn.MaxPool2d(kernel_size=2, stride=2) |
|
|
49 |
|
|
|
50 |
self.sil_stage_0 = SetBlockWrapper(self.sil_stage_0) |
|
|
51 |
self.sil_stage_1 = SetBlockWrapper(self.sil_stage_1) |
|
|
52 |
self.sil_stage_2 = SetBlockWrapper(self.sil_stage_2) |
|
|
53 |
|
|
|
54 |
self.lateral_layer1 = nn.Conv2d( |
|
|
55 |
in_channels[1]*2, lateral_dim, kernel_size=1, stride=1, padding=0, bias=False) |
|
|
56 |
self.lateral_layer2 = nn.Conv2d( |
|
|
57 |
in_channels[2]*2, lateral_dim, kernel_size=1, stride=1, padding=0, bias=False) |
|
|
58 |
self.lateral_layer3 = nn.Conv2d( |
|
|
59 |
in_channels[3]*2, lateral_dim, kernel_size=1, stride=1, padding=0, bias=False) |
|
|
60 |
|
|
|
61 |
self.smooth_layer1 = nn.Conv2d( |
|
|
62 |
lateral_dim, lateral_dim, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
63 |
self.smooth_layer2 = nn.Conv2d( |
|
|
64 |
lateral_dim, lateral_dim, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
65 |
self.smooth_layer3 = nn.Conv2d( |
|
|
66 |
lateral_dim, lateral_dim, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
67 |
|
|
|
68 |
self.HPP = HorizontalPoolingPyramid() |
|
|
69 |
self.Head = SeparateFCs(**model_cfg['SeparateFCs']) |
|
|
70 |
|
|
|
71 |
if not self.pretrain: |
|
|
72 |
self.encoder_bn = nn.BatchNorm1d(sum(self.bin_num)*3*self.hidden_dim) |
|
|
73 |
self.encoder_bn.bias.requires_grad_(False) |
|
|
74 |
|
|
|
75 |
self.reduce_dp = nn.Dropout(p=model_cfg['dropout']) |
|
|
76 |
self.reduce_ac = nn.ReLU(inplace=True) |
|
|
77 |
self.reduce_fc = nn.Linear(sum(self.bin_num)*3*self.hidden_dim, reduce_dim, bias=False) |
|
|
78 |
|
|
|
79 |
self.reduce_bn = nn.BatchNorm1d(reduce_dim) |
|
|
80 |
self.reduce_bn.bias.requires_grad_(False) |
|
|
81 |
|
|
|
82 |
self.reduce_cls = nn.Linear(reduce_dim, model_cfg['class_num'], bias=False) |
|
|
83 |
|
|
|
84 |
def upsample_add(self, x, y): |
|
|
85 |
return F.interpolate(x, scale_factor=2, mode='nearest') + y |
|
|
86 |
|
|
|
87 |
def forward(self, inputs): |
|
|
88 |
ipts, labs, _, _, seqL = inputs |
|
|
89 |
sils = ipts[0] # [n, s, h, w] |
|
|
90 |
del ipts |
|
|
91 |
if len(sils.size()) == 4: |
|
|
92 |
sils = sils.unsqueeze(1) |
|
|
93 |
n, _, s, h, w = sils.size() |
|
|
94 |
|
|
|
95 |
### stage 0 sil ### |
|
|
96 |
sil_0_outs = self.sil_stage_0(sils) |
|
|
97 |
stage_0_sil_set = self.set_pooling(sil_0_outs, seqL, options={"dim": 2})[0] |
|
|
98 |
|
|
|
99 |
### stage 1 sil ### |
|
|
100 |
sil_1_ipts = self.MaxP_sil(sil_0_outs) |
|
|
101 |
sil_1_outs = self.sil_stage_1(sil_1_ipts) |
|
|
102 |
|
|
|
103 |
### stage 2 sil ### |
|
|
104 |
sil_2_ipts = self.MaxP_sil(sil_1_outs) |
|
|
105 |
sil_2_outs = self.sil_stage_2(sil_2_ipts) |
|
|
106 |
|
|
|
107 |
### stage 1 set ### |
|
|
108 |
set_1_ipts = self.set_pooling(sil_1_ipts, seqL, options={"dim": 2})[0] |
|
|
109 |
stage_1_sil_set = self.set_pooling(sil_1_outs, seqL, options={"dim": 2})[0] |
|
|
110 |
set_1_outs = self.set_stage_1(set_1_ipts) + stage_1_sil_set |
|
|
111 |
|
|
|
112 |
### stage 2 set ### |
|
|
113 |
set_2_ipts = self.MaxP_set(set_1_outs) |
|
|
114 |
stage_2_sil_set = self.set_pooling(sil_2_outs, seqL, options={"dim": 2})[0] |
|
|
115 |
set_2_outs = self.set_stage_2(set_2_ipts) + stage_2_sil_set |
|
|
116 |
|
|
|
117 |
set1 = torch.cat((stage_0_sil_set, stage_0_sil_set), dim=1) |
|
|
118 |
set2 = torch.cat((stage_1_sil_set, set_1_outs), dim=1) |
|
|
119 |
set3 = torch.cat((stage_2_sil_set, set_2_outs), dim=1) |
|
|
120 |
|
|
|
121 |
# print(set1.shape,set2.shape,set3.shape,"***\n") |
|
|
122 |
|
|
|
123 |
# lateral |
|
|
124 |
set3 = self.lateral_layer3(set3) |
|
|
125 |
set2 = self.upsample_add(set3, self.lateral_layer2(set2)) |
|
|
126 |
set1 = self.upsample_add(set2, self.lateral_layer1(set1)) |
|
|
127 |
|
|
|
128 |
set3 = self.smooth_layer3(set3) |
|
|
129 |
set2 = self.smooth_layer2(set2) |
|
|
130 |
set1 = self.smooth_layer1(set1) |
|
|
131 |
|
|
|
132 |
set1 = self.HPP(set1) |
|
|
133 |
set2 = self.HPP(set2) |
|
|
134 |
set3 = self.HPP(set3) |
|
|
135 |
|
|
|
136 |
feature = torch.cat([set1, set2, set3], -1) |
|
|
137 |
|
|
|
138 |
feature = self.Head(feature) |
|
|
139 |
|
|
|
140 |
# compact_bloack |
|
|
141 |
if not self.pretrain: |
|
|
142 |
bn_feature = self.encoder_bn(feature.view(n, -1)) |
|
|
143 |
bn_feature = bn_feature.view(*feature.shape).contiguous() |
|
|
144 |
|
|
|
145 |
reduce_feature = self.reduce_dp(bn_feature) |
|
|
146 |
reduce_feature = self.reduce_ac(reduce_feature) |
|
|
147 |
reduce_feature = self.reduce_fc(reduce_feature.view(n, -1)) |
|
|
148 |
|
|
|
149 |
bn_reduce_feature = self.reduce_bn(reduce_feature) |
|
|
150 |
logits = self.reduce_cls(bn_reduce_feature).unsqueeze(1) # n c |
|
|
151 |
|
|
|
152 |
reduce_feature = reduce_feature.unsqueeze(1).contiguous() |
|
|
153 |
bn_reduce_feature = bn_reduce_feature.unsqueeze(1).contiguous() |
|
|
154 |
|
|
|
155 |
retval = { |
|
|
156 |
'training_feat': {}, |
|
|
157 |
'visual_summary': { |
|
|
158 |
'image/sils': sils.view(n*s, 1, h, w) |
|
|
159 |
}, |
|
|
160 |
'inference_feat': { |
|
|
161 |
'embeddings': feature # reduce_feature # bn_reduce_feature |
|
|
162 |
} |
|
|
163 |
} |
|
|
164 |
if self.pretrain: |
|
|
165 |
retval['training_feat']['triplet'] = {'embeddings': feature, 'labels': labs} |
|
|
166 |
else: |
|
|
167 |
retval['training_feat']['triplet'] = {'embeddings': feature, 'labels': labs} |
|
|
168 |
retval['training_feat']['softmax'] = {'logits': logits, 'labels': labs} |
|
|
169 |
return retval |