[fd9ef4]: / opengait / modeling / models / gln.py

Download this file

170 lines (132 with data), 7.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
import copy
import torch.nn as nn
import torch.nn.functional as F
from ..base_model import BaseModel
from ..modules import SeparateFCs, BasicConv2d, SetBlockWrapper, HorizontalPoolingPyramid, PackSequenceWrapper
class GLN(BaseModel):
"""
http://home.ustc.edu.cn/~saihui/papers/eccv2020_gln.pdf
Gait Lateral Network: Learning Discriminative and Compact Representations for Gait Recognition
"""
def build_network(self, model_cfg):
in_channels = model_cfg['in_channels']
self.bin_num = model_cfg['bin_num']
self.hidden_dim = model_cfg['hidden_dim']
lateral_dim = model_cfg['lateral_dim']
reduce_dim = self.hidden_dim
self.pretrain = model_cfg['Lateral_pretraining']
self.sil_stage_0 = nn.Sequential(BasicConv2d(in_channels[0], in_channels[1], 5, 1, 2),
nn.LeakyReLU(inplace=True),
BasicConv2d(
in_channels[1], in_channels[1], 3, 1, 1),
nn.LeakyReLU(inplace=True))
self.sil_stage_1 = nn.Sequential(BasicConv2d(in_channels[1], in_channels[2], 3, 1, 1),
nn.LeakyReLU(inplace=True),
BasicConv2d(
in_channels[2], in_channels[2], 3, 1, 1),
nn.LeakyReLU(inplace=True))
self.sil_stage_2 = nn.Sequential(BasicConv2d(in_channels[2], in_channels[3], 3, 1, 1),
nn.LeakyReLU(inplace=True),
BasicConv2d(
in_channels[3], in_channels[3], 3, 1, 1),
nn.LeakyReLU(inplace=True))
self.set_stage_1 = copy.deepcopy(self.sil_stage_1)
self.set_stage_2 = copy.deepcopy(self.sil_stage_2)
self.set_pooling = PackSequenceWrapper(torch.max)
self.MaxP_sil = SetBlockWrapper(nn.MaxPool2d(kernel_size=2, stride=2))
self.MaxP_set = nn.MaxPool2d(kernel_size=2, stride=2)
self.sil_stage_0 = SetBlockWrapper(self.sil_stage_0)
self.sil_stage_1 = SetBlockWrapper(self.sil_stage_1)
self.sil_stage_2 = SetBlockWrapper(self.sil_stage_2)
self.lateral_layer1 = nn.Conv2d(
in_channels[1]*2, lateral_dim, kernel_size=1, stride=1, padding=0, bias=False)
self.lateral_layer2 = nn.Conv2d(
in_channels[2]*2, lateral_dim, kernel_size=1, stride=1, padding=0, bias=False)
self.lateral_layer3 = nn.Conv2d(
in_channels[3]*2, lateral_dim, kernel_size=1, stride=1, padding=0, bias=False)
self.smooth_layer1 = nn.Conv2d(
lateral_dim, lateral_dim, kernel_size=3, stride=1, padding=1, bias=False)
self.smooth_layer2 = nn.Conv2d(
lateral_dim, lateral_dim, kernel_size=3, stride=1, padding=1, bias=False)
self.smooth_layer3 = nn.Conv2d(
lateral_dim, lateral_dim, kernel_size=3, stride=1, padding=1, bias=False)
self.HPP = HorizontalPoolingPyramid()
self.Head = SeparateFCs(**model_cfg['SeparateFCs'])
if not self.pretrain:
self.encoder_bn = nn.BatchNorm1d(sum(self.bin_num)*3*self.hidden_dim)
self.encoder_bn.bias.requires_grad_(False)
self.reduce_dp = nn.Dropout(p=model_cfg['dropout'])
self.reduce_ac = nn.ReLU(inplace=True)
self.reduce_fc = nn.Linear(sum(self.bin_num)*3*self.hidden_dim, reduce_dim, bias=False)
self.reduce_bn = nn.BatchNorm1d(reduce_dim)
self.reduce_bn.bias.requires_grad_(False)
self.reduce_cls = nn.Linear(reduce_dim, model_cfg['class_num'], bias=False)
def upsample_add(self, x, y):
return F.interpolate(x, scale_factor=2, mode='nearest') + y
def forward(self, inputs):
ipts, labs, _, _, seqL = inputs
sils = ipts[0] # [n, s, h, w]
del ipts
if len(sils.size()) == 4:
sils = sils.unsqueeze(1)
n, _, s, h, w = sils.size()
### stage 0 sil ###
sil_0_outs = self.sil_stage_0(sils)
stage_0_sil_set = self.set_pooling(sil_0_outs, seqL, options={"dim": 2})[0]
### stage 1 sil ###
sil_1_ipts = self.MaxP_sil(sil_0_outs)
sil_1_outs = self.sil_stage_1(sil_1_ipts)
### stage 2 sil ###
sil_2_ipts = self.MaxP_sil(sil_1_outs)
sil_2_outs = self.sil_stage_2(sil_2_ipts)
### stage 1 set ###
set_1_ipts = self.set_pooling(sil_1_ipts, seqL, options={"dim": 2})[0]
stage_1_sil_set = self.set_pooling(sil_1_outs, seqL, options={"dim": 2})[0]
set_1_outs = self.set_stage_1(set_1_ipts) + stage_1_sil_set
### stage 2 set ###
set_2_ipts = self.MaxP_set(set_1_outs)
stage_2_sil_set = self.set_pooling(sil_2_outs, seqL, options={"dim": 2})[0]
set_2_outs = self.set_stage_2(set_2_ipts) + stage_2_sil_set
set1 = torch.cat((stage_0_sil_set, stage_0_sil_set), dim=1)
set2 = torch.cat((stage_1_sil_set, set_1_outs), dim=1)
set3 = torch.cat((stage_2_sil_set, set_2_outs), dim=1)
# print(set1.shape,set2.shape,set3.shape,"***\n")
# lateral
set3 = self.lateral_layer3(set3)
set2 = self.upsample_add(set3, self.lateral_layer2(set2))
set1 = self.upsample_add(set2, self.lateral_layer1(set1))
set3 = self.smooth_layer3(set3)
set2 = self.smooth_layer2(set2)
set1 = self.smooth_layer1(set1)
set1 = self.HPP(set1)
set2 = self.HPP(set2)
set3 = self.HPP(set3)
feature = torch.cat([set1, set2, set3], -1)
feature = self.Head(feature)
# compact_bloack
if not self.pretrain:
bn_feature = self.encoder_bn(feature.view(n, -1))
bn_feature = bn_feature.view(*feature.shape).contiguous()
reduce_feature = self.reduce_dp(bn_feature)
reduce_feature = self.reduce_ac(reduce_feature)
reduce_feature = self.reduce_fc(reduce_feature.view(n, -1))
bn_reduce_feature = self.reduce_bn(reduce_feature)
logits = self.reduce_cls(bn_reduce_feature).unsqueeze(1) # n c
reduce_feature = reduce_feature.unsqueeze(1).contiguous()
bn_reduce_feature = bn_reduce_feature.unsqueeze(1).contiguous()
retval = {
'training_feat': {},
'visual_summary': {
'image/sils': sils.view(n*s, 1, h, w)
},
'inference_feat': {
'embeddings': feature # reduce_feature # bn_reduce_feature
}
}
if self.pretrain:
retval['training_feat']['triplet'] = {'embeddings': feature, 'labels': labs}
else:
retval['training_feat']['triplet'] = {'embeddings': feature, 'labels': labs}
retval['training_feat']['softmax'] = {'logits': logits, 'labels': labs}
return retval