--- a
+++ b/opengait/modeling/models/gaitset.py
@@ -0,0 +1,85 @@
+import torch
+import copy
+import torch.nn as nn
+
+from ..base_model import BaseModel
+from ..modules import SeparateFCs, BasicConv2d, SetBlockWrapper, HorizontalPoolingPyramid, PackSequenceWrapper
+
+
+class GaitSet(BaseModel):
+    """
+        GaitSet: Regarding Gait as a Set for Cross-View Gait Recognition
+        Arxiv:  https://arxiv.org/abs/1811.06186
+        Github: https://github.com/AbnerHqC/GaitSet
+    """
+
+    def build_network(self, model_cfg):
+        in_c = model_cfg['in_channels']
+        self.set_block1 = nn.Sequential(BasicConv2d(in_c[0], in_c[1], 5, 1, 2),
+                                        nn.LeakyReLU(inplace=True),
+                                        BasicConv2d(in_c[1], in_c[1], 3, 1, 1),
+                                        nn.LeakyReLU(inplace=True),
+                                        nn.MaxPool2d(kernel_size=2, stride=2))
+
+        self.set_block2 = nn.Sequential(BasicConv2d(in_c[1], in_c[2], 3, 1, 1),
+                                        nn.LeakyReLU(inplace=True),
+                                        BasicConv2d(in_c[2], in_c[2], 3, 1, 1),
+                                        nn.LeakyReLU(inplace=True),
+                                        nn.MaxPool2d(kernel_size=2, stride=2))
+
+        self.set_block3 = nn.Sequential(BasicConv2d(in_c[2], in_c[3], 3, 1, 1),
+                                        nn.LeakyReLU(inplace=True),
+                                        BasicConv2d(in_c[3], in_c[3], 3, 1, 1),
+                                        nn.LeakyReLU(inplace=True))
+
+        self.gl_block2 = copy.deepcopy(self.set_block2)
+        self.gl_block3 = copy.deepcopy(self.set_block3)
+
+        self.set_block1 = SetBlockWrapper(self.set_block1)
+        self.set_block2 = SetBlockWrapper(self.set_block2)
+        self.set_block3 = SetBlockWrapper(self.set_block3)
+
+        self.set_pooling = PackSequenceWrapper(torch.max)
+
+        self.Head = SeparateFCs(**model_cfg['SeparateFCs'])
+
+        self.HPP = HorizontalPoolingPyramid(bin_num=model_cfg['bin_num'])
+
+    def forward(self, inputs):
+        ipts, labs, _, _, seqL = inputs
+        sils = ipts[0]  # [n, s, h, w]
+        if len(sils.size()) == 4:
+            sils = sils.unsqueeze(1)
+
+        del ipts
+        outs = self.set_block1(sils)
+        gl = self.set_pooling(outs, seqL, options={"dim": 2})[0]
+        gl = self.gl_block2(gl)
+
+        outs = self.set_block2(outs)
+        gl = gl + self.set_pooling(outs, seqL, options={"dim": 2})[0]
+        gl = self.gl_block3(gl)
+
+        outs = self.set_block3(outs)
+        outs = self.set_pooling(outs, seqL, options={"dim": 2})[0]
+        gl = gl + outs
+
+        # Horizontal Pooling Matching, HPM
+        feature1 = self.HPP(outs)  # [n, c, p]
+        feature2 = self.HPP(gl)  # [n, c, p]
+        feature = torch.cat([feature1, feature2], -1)  # [n, c, p]
+        embs = self.Head(feature)
+
+        n, _, s, h, w = sils.size()
+        retval = {
+            'training_feat': {
+                'triplet': {'embeddings': embs, 'labels': labs}
+            },
+            'visual_summary': {
+                'image/sils': sils.view(n*s, 1, h, w)
+            },
+            'inference_feat': {
+                'embeddings': embs
+            }
+        }
+        return retval