|
a |
|
b/opengait/modeling/losses/triplet.py |
|
|
1 |
import torch |
|
|
2 |
import torch.nn.functional as F |
|
|
3 |
|
|
|
4 |
from .base import BaseLoss, gather_and_scale_wrapper |
|
|
5 |
|
|
|
6 |
|
|
|
7 |
class TripletLoss(BaseLoss): |
|
|
8 |
def __init__(self, margin, loss_term_weight=1.0): |
|
|
9 |
super(TripletLoss, self).__init__(loss_term_weight) |
|
|
10 |
self.margin = margin |
|
|
11 |
|
|
|
12 |
@gather_and_scale_wrapper |
|
|
13 |
def forward(self, embeddings, labels): |
|
|
14 |
# embeddings: [n, c, p], label: [n] |
|
|
15 |
embeddings = embeddings.permute( |
|
|
16 |
2, 0, 1).contiguous().float() # [n, c, p] -> [p, n, c] |
|
|
17 |
|
|
|
18 |
ref_embed, ref_label = embeddings, labels |
|
|
19 |
dist = self.ComputeDistance(embeddings, ref_embed) # [p, n1, n2] |
|
|
20 |
mean_dist = dist.mean((1, 2)) # [p] |
|
|
21 |
ap_dist, an_dist = self.Convert2Triplets(labels, ref_label, dist) |
|
|
22 |
dist_diff = (ap_dist - an_dist).view(dist.size(0), -1) |
|
|
23 |
loss = F.relu(dist_diff + self.margin) |
|
|
24 |
|
|
|
25 |
hard_loss = torch.max(loss, -1)[0] |
|
|
26 |
loss_avg, loss_num = self.AvgNonZeroReducer(loss) |
|
|
27 |
|
|
|
28 |
self.info.update({ |
|
|
29 |
'loss': loss_avg.detach().clone(), |
|
|
30 |
'hard_loss': hard_loss.detach().clone(), |
|
|
31 |
'loss_num': loss_num.detach().clone(), |
|
|
32 |
'mean_dist': mean_dist.detach().clone()}) |
|
|
33 |
|
|
|
34 |
return loss_avg, self.info |
|
|
35 |
|
|
|
36 |
def AvgNonZeroReducer(self, loss): |
|
|
37 |
eps = 1.0e-9 |
|
|
38 |
loss_sum = loss.sum(-1) |
|
|
39 |
loss_num = (loss != 0).sum(-1).float() |
|
|
40 |
|
|
|
41 |
loss_avg = loss_sum / (loss_num + eps) |
|
|
42 |
loss_avg[loss_num == 0] = 0 |
|
|
43 |
return loss_avg, loss_num |
|
|
44 |
|
|
|
45 |
def ComputeDistance(self, x, y): |
|
|
46 |
""" |
|
|
47 |
x: [p, n_x, c] |
|
|
48 |
y: [p, n_y, c] |
|
|
49 |
""" |
|
|
50 |
x2 = torch.sum(x ** 2, -1).unsqueeze(2) # [p, n_x, 1] |
|
|
51 |
y2 = torch.sum(y ** 2, -1).unsqueeze(1) # [p, 1, n_y] |
|
|
52 |
inner = x.matmul(y.transpose(1, 2)) # [p, n_x, n_y] |
|
|
53 |
dist = x2 + y2 - 2 * inner |
|
|
54 |
dist = torch.sqrt(F.relu(dist)) # [p, n_x, n_y] |
|
|
55 |
return dist |
|
|
56 |
|
|
|
57 |
def Convert2Triplets(self, row_labels, clo_label, dist): |
|
|
58 |
""" |
|
|
59 |
row_labels: tensor with size [n_r] |
|
|
60 |
clo_label : tensor with size [n_c] |
|
|
61 |
""" |
|
|
62 |
matches = (row_labels.unsqueeze(1) == |
|
|
63 |
clo_label.unsqueeze(0)).bool() # [n_r, n_c] |
|
|
64 |
diffenc = torch.logical_not(matches) # [n_r, n_c] |
|
|
65 |
p, n, _ = dist.size() |
|
|
66 |
ap_dist = dist[:, matches].view(p, n, -1, 1) |
|
|
67 |
an_dist = dist[:, diffenc].view(p, n, 1, -1) |
|
|
68 |
return ap_dist, an_dist |