[fd9ef4]: / opengait / modeling / losses / ce.py

Download this file

33 lines (28 with data), 1.1 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch.nn.functional as F
from .base import BaseLoss
class CrossEntropyLoss(BaseLoss):
def __init__(self, scale=2**4, label_smooth=True, eps=0.1, loss_term_weight=1.0, log_accuracy=False):
super(CrossEntropyLoss, self).__init__(loss_term_weight)
self.scale = scale
self.label_smooth = label_smooth
self.eps = eps
self.log_accuracy = log_accuracy
def forward(self, logits, labels):
"""
logits: [n, c, p]
labels: [n]
"""
n, c, p = logits.size()
logits = logits.float()
labels = labels.unsqueeze(1)
if self.label_smooth:
loss = F.cross_entropy(
logits*self.scale, labels.repeat(1, p), label_smoothing=self.eps)
else:
loss = F.cross_entropy(logits*self.scale, labels.repeat(1, p))
self.info.update({'loss': loss.detach().clone()})
if self.log_accuracy:
pred = logits.argmax(dim=1) # [n, p]
accu = (pred == labels).float().mean()
self.info.update({'accuracy': accu})
return loss, self.info