import torch.nn as nn
import torch
class ConvBlock(nn.Module):
def __init__(self, ch_in, ch_out):
super(ConvBlock, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(ch_in, ch_out, kernel_size=3,
stride=1, padding=1, bias=True),
nn.BatchNorm2d(ch_out),
nn.ReLU(inplace=True),
nn.Conv2d(ch_out, ch_out, kernel_size=3,
stride=1, padding=1, bias=True),
nn.BatchNorm2d(ch_out),
nn.ReLU(inplace=True)
)
def forward(self, x):
x = self.conv(x)
return x
class UpConv(nn.Module):
def __init__(self, ch_in, ch_out):
super(UpConv, self).__init__()
self.up = nn.Sequential(
nn.Upsample(scale_factor=2),
nn.Conv2d(ch_in, ch_out, kernel_size=3,
stride=1, padding=1, bias=True),
nn.BatchNorm2d(ch_out),
nn.ReLU(inplace=True)
)
def forward(self, x):
x = self.up(x)
return x
class U_Net(nn.Module):
def __init__(self, in_channels=3, freeze_half=True):
super(U_Net, self).__init__()
self.Maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
self.Conv1 = ConvBlock(ch_in=in_channels, ch_out=16)
self.Conv2 = ConvBlock(ch_in=16, ch_out=32)
self.Conv3 = ConvBlock(ch_in=32, ch_out=64)
self.Conv4 = ConvBlock(ch_in=64, ch_out=128)
self.freeze = freeze_half
# Begin Fine-tuning
if freeze_half:
self.Conv1.requires_grad_(False)
self.Conv2.requires_grad_(False)
self.Conv3.requires_grad_(False)
self.Conv4.requires_grad_(False)
# End Fine-tuning
self.Up4 = UpConv(ch_in=128, ch_out=64)
self.Up_conv4 = ConvBlock(ch_in=128, ch_out=64)
self.Up3 = UpConv(ch_in=64, ch_out=32)
self.Up_conv3 = ConvBlock(ch_in=64, ch_out=32)
self.Up2 = UpConv(ch_in=32, ch_out=16)
self.Up_conv2 = ConvBlock(ch_in=32, ch_out=16)
self.Conv_1x1 = nn.Conv2d(
16, 1, kernel_size=1, stride=1, padding=0)
def forward(self, x):
if self.freeze:
with torch.no_grad():
# encoding path
# Begin Fine-tuning
x1 = self.Conv1(x)
x2 = self.Maxpool(x1)
x2 = self.Conv2(x2)
x3 = self.Maxpool(x2)
x3 = self.Conv3(x3)
x4 = self.Maxpool(x3)
x4 = self.Conv4(x4)
# End Fine-tuning
else:
x1 = self.Conv1(x)
x2 = self.Maxpool(x1)
x2 = self.Conv2(x2)
x3 = self.Maxpool(x2)
x3 = self.Conv3(x3)
x4 = self.Maxpool(x3)
x4 = self.Conv4(x4)
d4 = self.Up4(x4)
d4 = torch.cat((x3, d4), dim=1)
d4 = self.Up_conv4(d4)
d3 = self.Up3(d4)
d3 = torch.cat((x2, d3), dim=1)
d3 = self.Up_conv3(d3)
d2 = self.Up2(d3)
d2 = torch.cat((x1, d2), dim=1)
d2 = self.Up_conv2(d2)
d1 = self.Conv_1x1(d2)
return d1