[fd9ef4]: / opengait / modeling / backbones / resgcn.py

Download this file

135 lines (114 with data), 4.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
import torch.nn as nn
from ..modules import TemporalBasicBlock, TemporalBottleneckBlock, SpatialBasicBlock, SpatialBottleneckBlock
class ResGCNModule(nn.Module):
"""
ResGCNModule
Arxiv: https://arxiv.org/abs/2010.09978
Github: https://github.com/Thomas-yx/ResGCNv1
https://github.com/BNU-IVC/FastPoseGait
"""
def __init__(self, in_channels, out_channels, block, A, stride=1, kernel_size=[9,2],reduction=4, get_res=False,is_main=False):
super(ResGCNModule, self).__init__()
if not len(kernel_size) == 2:
logging.info('')
logging.error('Error: Please check whether len(kernel_size) == 2')
raise ValueError()
if not kernel_size[0] % 2 == 1:
logging.info('')
logging.error('Error: Please check whether kernel_size[0] % 2 == 1')
raise ValueError()
temporal_window_size, max_graph_distance = kernel_size
if block == 'initial':
module_res, block_res = False, False
elif block == 'Basic':
module_res, block_res = True, False
else:
module_res, block_res = False, True
if not module_res:
self.residual = lambda x: 0
elif stride == 1 and in_channels == out_channels:
self.residual = lambda x: x
else:
# stride =2
self.residual = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1, (stride,1)),
nn.BatchNorm2d(out_channels),
)
if block in ['Basic','initial']:
spatial_block = SpatialBasicBlock
temporal_block = TemporalBasicBlock
if block == 'Bottleneck':
spatial_block = SpatialBottleneckBlock
temporal_block = TemporalBottleneckBlock
self.scn = spatial_block(in_channels, out_channels, max_graph_distance, block_res,reduction)
if in_channels == out_channels and is_main:
tcn_stride =True
else:
tcn_stride = False
self.tcn = temporal_block(out_channels, temporal_window_size, stride, block_res,reduction,get_res=get_res,tcn_stride=tcn_stride)
self.edge = nn.Parameter(torch.ones_like(A))
def forward(self, x, A):
A = A.cuda(x.get_device())
return self.tcn(self.scn(x, A*self.edge), self.residual(x))
class ResGCNInputBranch(nn.Module):
"""
ResGCNInputBranch_Module
Arxiv: https://arxiv.org/abs/2010.09978
Github: https://github.com/Thomas-yx/ResGCNv1
"""
def __init__(self, input_branch, block, A, input_num , reduction = 4):
super(ResGCNInputBranch, self).__init__()
self.register_buffer('A', A)
module_list = []
for i in range(len(input_branch)-1):
if i==0:
module_list.append(ResGCNModule(input_branch[i],input_branch[i+1],'initial',A, reduction=reduction))
else:
module_list.append(ResGCNModule(input_branch[i],input_branch[i+1],block,A,reduction=reduction))
self.bn = nn.BatchNorm2d(input_branch[0])
self.layers = nn.ModuleList(module_list)
def forward(self, x):
x = self.bn(x)
for layer in self.layers:
x = layer(x, self.A)
return x
class ResGCN(nn.Module):
"""
ResGCN
Arxiv: https://arxiv.org/abs/2010.09978
"""
def __init__(self, input_num, input_branch, main_stream,num_class, reduction, block, graph):
super(ResGCN, self).__init__()
self.graph = graph
self.head= nn.ModuleList(
ResGCNInputBranch(input_branch, block, graph, input_num ,reduction)
for _ in range(input_num)
)
main_stream_list = []
for i in range(len(main_stream)-1):
if main_stream[i]==main_stream[i+1]:
stride = 1
else:
stride = 2
if i ==0:
main_stream_list.append(ResGCNModule(main_stream[i]*input_num,main_stream[i+1],block,graph,stride=1,reduction = reduction,get_res=True,is_main=True))
else:
main_stream_list.append(ResGCNModule(main_stream[i],main_stream[i+1],block,graph,stride = stride, reduction = reduction,is_main=True))
self.backbone = nn.ModuleList(main_stream_list)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.fcn = nn.Linear(256, num_class)
def forward(self, x):
# input branch
x_cat = []
for i, branch in enumerate(self.head):
x_cat.append(branch(x[:, i]))
x = torch.cat(x_cat, dim=1)
# main stream
for layer in self.backbone:
x = layer(x, self.graph)
# output
x = self.global_pooling(x)
x = x.squeeze(-1)
x = self.fcn(x.squeeze((-1)))
return x