import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.parameter import Parameter
import math
class Normalize(nn.Module):
def __init__(self, power=2):
super(Normalize, self).__init__()
self.power = power
def forward(self, x):
norm = x.pow(self.power).sum(1, keepdim=True).pow(1. / self.power)
out = x.div(norm)
return out
class GraphConvolution(nn.Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, adj_size=9, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.adj_size = adj_size
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
#self.bn = nn.BatchNorm2d(self.out_features)
self.bn = nn.BatchNorm1d(out_features * adj_size)
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.matmul(input, self.weight)
output_ = torch.bmm(adj, support)
if self.bias is not None:
output_ = output_ + self.bias
output = output_.view(output_.size(0), output_.size(1)*output_.size(2))
output = self.bn(output)
output = output.view(output_.size(0), output_.size(1), output_.size(2))
return output
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'
class GCN(nn.Module):
def __init__(self, adj_size, nfeat, nhid, isMeanPooling = True):
super(GCN, self).__init__()
self.adj_size = adj_size
self.nhid = nhid
self.isMeanPooling = isMeanPooling
self.gc1 = GraphConvolution(nfeat, nhid ,adj_size)
self.gc2 = GraphConvolution(nhid, nhid, adj_size)
def forward(self, x, adj):
x_ = F.dropout(x, 0.5, training=self.training)
x_ = F.relu(self.gc1(x_, adj))
x_ = F.dropout(x_, 0.5, training=self.training)
x_ = F.relu(self.gc2(x_, adj))
return x_