--- a +++ b/opengait/evaluation/re_rank.py @@ -0,0 +1,64 @@ +import numpy as np + + +def re_ranking(original_dist, query_num, k1, k2, lambda_value): + # Modified from https://github.com/michuanhaohao/reid-strong-baseline/blob/master/utils/re_ranking.py + all_num = original_dist.shape[0] + original_dist = np.transpose(original_dist / np.max(original_dist, axis=0)) + V = np.zeros_like(original_dist).astype(np.float16) + initial_rank = np.argsort(original_dist).astype(np.int32) + + for i in range(all_num): + # k-reciprocal neighbors + forward_k_neigh_index = initial_rank[i, :k1 + 1] + backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1] + fi = np.where(backward_k_neigh_index == i)[0] + k_reciprocal_index = forward_k_neigh_index[fi] + k_reciprocal_expansion_index = k_reciprocal_index + for j in range(len(k_reciprocal_index)): + candidate = k_reciprocal_index[j] + candidate_forward_k_neigh_index = initial_rank[candidate, :int( + np.around(k1 / 2)) + 1] + candidate_backward_k_neigh_index = initial_rank[candidate_forward_k_neigh_index, + :int(np.around(k1 / 2)) + 1] + fi_candidate = np.where( + candidate_backward_k_neigh_index == candidate)[0] + candidate_k_reciprocal_index = candidate_forward_k_neigh_index[fi_candidate] + if len(np.intersect1d(candidate_k_reciprocal_index, k_reciprocal_index)) > 2 / 3 * len( + candidate_k_reciprocal_index): + k_reciprocal_expansion_index = np.append( + k_reciprocal_expansion_index, candidate_k_reciprocal_index) + + k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index) + weight = np.exp(-original_dist[i, k_reciprocal_expansion_index]) + V[i, k_reciprocal_expansion_index] = weight / np.sum(weight) + original_dist = original_dist[:query_num, ] + if k2 != 1: + V_qe = np.zeros_like(V, dtype=np.float16) + for i in range(all_num): + V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0) + V = V_qe + del V_qe + del initial_rank + invIndex = [] + for i in range(all_num): + invIndex.append(np.where(V[:, i] != 0)[0]) + + jaccard_dist = np.zeros_like(original_dist, dtype=np.float16) + + for i in range(query_num): + temp_min = np.zeros(shape=[1, all_num], dtype=np.float16) + indNonZero = np.where(V[i, :] != 0)[0] + indImages = [invIndex[ind] for ind in indNonZero] + for j in range(len(indNonZero)): + temp_min[0, indImages[j]] = temp_min[0, indImages[j]] + np.minimum(V[i, indNonZero[j]], + V[indImages[j], indNonZero[j]]) + jaccard_dist[i] = 1 - temp_min / (2 - temp_min) + + final_dist = jaccard_dist * (1 - lambda_value) + \ + original_dist * lambda_value + del original_dist + del V + del jaccard_dist + final_dist = final_dist[:query_num, query_num:] + return final_dist