import torch
import numpy as np
import torch.nn.functional as F
from utils import is_tensor
def cuda_dist(x, y, metric='euc'):
x = torch.from_numpy(x).cuda()
y = torch.from_numpy(y).cuda()
if metric == 'cos':
x = F.normalize(x, p=2, dim=1) # n c p
y = F.normalize(y, p=2, dim=1) # n c p
num_bin = x.size(2)
n_x = x.size(0)
n_y = y.size(0)
dist = torch.zeros(n_x, n_y).cuda()
for i in range(num_bin):
_x = x[:, :, i]
_y = y[:, :, i]
if metric == 'cos':
dist += torch.matmul(_x, _y.transpose(0, 1))
else:
_dist = torch.sum(_x ** 2, 1).unsqueeze(1) + torch.sum(_y ** 2, 1).unsqueeze(
0) - 2 * torch.matmul(_x, _y.transpose(0, 1))
dist += torch.sqrt(F.relu(_dist))
return 1 - dist/num_bin if metric == 'cos' else dist / num_bin
def mean_iou(msk1, msk2, eps=1.0e-9):
if not is_tensor(msk1):
msk1 = torch.from_numpy(msk1).cuda()
if not is_tensor(msk2):
msk2 = torch.from_numpy(msk2).cuda()
n = msk1.size(0)
inter = msk1 * msk2
union = ((msk1 + msk2) > 0.).float()
miou = inter.view(n, -1).sum(-1) / (union.view(n, -1).sum(-1) + eps)
return miou
def compute_ACC_mAP(distmat, q_pids, g_pids, q_views=None, g_views=None, rank=1):
num_q, _ = distmat.shape
# indices = np.argsort(distmat, axis=1)
# matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)
all_ACC = []
all_AP = []
num_valid_q = 0. # number of valid query
for q_idx in range(num_q):
q_idx_dist = distmat[q_idx]
q_idx_glabels = g_pids
if q_views is not None and g_views is not None:
q_idx_mask = np.isin(g_views, q_views[q_idx], invert=True) | np.isin(
g_pids, q_pids[q_idx], invert=True)
q_idx_dist = q_idx_dist[q_idx_mask]
q_idx_glabels = q_idx_glabels[q_idx_mask]
assert(len(q_idx_glabels) >
0), "No gallery after excluding identical-view cases!"
q_idx_indices = np.argsort(q_idx_dist)
q_idx_matches = (q_idx_glabels[q_idx_indices]
== q_pids[q_idx]).astype(np.int32)
# binary vector, positions with value 1 are correct matches
# orig_cmc = matches[q_idx]
orig_cmc = q_idx_matches
cmc = orig_cmc.cumsum()
cmc[cmc > 1] = 1
all_ACC.append(cmc[rank-1])
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
num_rel = orig_cmc.sum()
if num_rel > 0:
num_valid_q += 1.
tmp_cmc = orig_cmc.cumsum()
tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)]
tmp_cmc = np.asarray(tmp_cmc) * orig_cmc
AP = tmp_cmc.sum() / num_rel
all_AP.append(AP)
# all_ACC = np.asarray(all_ACC).astype(np.float32)
ACC = np.mean(all_ACC)
mAP = np.mean(all_AP)
return ACC, mAP
def evaluate_rank(distmat, p_lbls, g_lbls, max_rank=50):
'''
Copy from https://github.com/Gait3D/Gait3D-Benchmark/blob/72beab994c137b902d826f4b9f9e95b107bebd78/lib/utils/rank.py#L12-L63
'''
num_p, num_g = distmat.shape
if num_g < max_rank:
max_rank = num_g
print('Note: number of gallery samples is quite small, got {}'.format(num_g))
indices = np.argsort(distmat, axis=1)
matches = (g_lbls[indices] == p_lbls[:, np.newaxis]).astype(np.int32)
# compute cmc curve for each probe
all_cmc = []
all_AP = []
all_INP = []
num_valid_p = 0. # number of valid probe
for p_idx in range(num_p):
# compute cmc curve
# binary vector, positions with value 1 are correct matches
raw_cmc = matches[p_idx]
if not np.any(raw_cmc):
# this condition is true when probe identity does not appear in gallery
continue
cmc = raw_cmc.cumsum()
pos_idx = np.where(raw_cmc == 1) # 返回坐标,此处raw_cmc为一维矩阵,所以返回相当于index
max_pos_idx = np.max(pos_idx)
inp = cmc[max_pos_idx] / (max_pos_idx + 1.0)
all_INP.append(inp)
cmc[cmc > 1] = 1
all_cmc.append(cmc[:max_rank])
num_valid_p += 1.
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
num_rel = raw_cmc.sum()
tmp_cmc = raw_cmc.cumsum()
tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)]
tmp_cmc = np.asarray(tmp_cmc) * raw_cmc
AP = tmp_cmc.sum() / num_rel
all_AP.append(AP)
assert num_valid_p > 0, 'Error: all probe identities do not appear in gallery'
all_cmc = np.asarray(all_cmc).astype(np.float32)
all_cmc = all_cmc.sum(0) / num_valid_p
return all_cmc, all_AP, all_INP
def evaluate_many(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50):
num_q, num_g = distmat.shape
if num_g < max_rank:
max_rank = num_g
print("Note: number of gallery samples is quite small, got {}".format(num_g))
indices = np.argsort(distmat, axis=1) # 对应位置变成从小到大的序号
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(
np.int32) # 根据indices调整顺序 g_pids[indices]
# print(matches)
# compute cmc curve for each query
all_cmc = []
all_AP = []
all_INP = []
num_valid_q = 0.
for q_idx in range(num_q):
# get query pid and camid
q_pid = q_pids[q_idx]
q_camid = q_camids[q_idx]
# remove gallery samples that have the same pid and camid with query
order = indices[q_idx]
remove = (g_pids[order] == q_pid) & (g_camids[order] == q_camid)
keep = np.invert(remove)
# compute cmc curve
# binary vector, positions with value 1 are correct matches
orig_cmc = matches[q_idx][keep]
if not np.any(orig_cmc):
# this condition is true when query identity does not appear in gallery
continue
cmc = orig_cmc.cumsum()
pos_idx = np.where(orig_cmc == 1)
max_pos_idx = np.max(pos_idx)
inp = cmc[max_pos_idx] / (max_pos_idx + 1.0)
all_INP.append(inp)
cmc[cmc > 1] = 1
all_cmc.append(cmc[:max_rank])
num_valid_q += 1.
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
num_rel = orig_cmc.sum()
tmp_cmc = orig_cmc.cumsum()
tmp_cmc = [x / (i+1.) for i, x in enumerate(tmp_cmc)]
tmp_cmc = np.asarray(tmp_cmc) * orig_cmc
AP = tmp_cmc.sum() / num_rel
all_AP.append(AP)
assert num_valid_q > 0, "Error: all query identities do not appear in gallery"
all_cmc = np.asarray(all_cmc).astype(np.float32)
all_cmc = all_cmc.sum(0) / num_valid_q
mAP = np.mean(all_AP)
mINP = np.mean(all_INP)
return all_cmc, mAP, mINP