Switch to unified view

a b/datasets/Scoliosis1K/README.md
1
# Tutorial for [Scoliosis1K](https://zhouzi180.github.io/Scoliosis1K)
2
3
## Download the Scoliosis1K dataset
4
Download the dataset from the [link](https://zhouzi180.github.io/Scoliosis1K).
5
decompress these two file by following command:
6
```shell
7
unzip -P password Scoliosis1K-pkl.zip   | xargs -n1 tar xzvf
8
```
9
password should be obtained by signing [agreement](https://zhouzi180.github.io/Scoliosis1K/static/resources/Scoliosis1KAgreement.pdf) and sending to email (12331257@mail.sustech.edu.cn)
10
11
Then you will get Scoliosis1K formatted as:
12
```
13
    DATASET_ROOT/
14
        00000 (subject)/
15
            positive (category)/
16
                    000-180 (view)/
17
                        000.pkl (contains all frames)
18
        ......
19
```
20
## Train the dataset
21
Modify the `dataset_root` in `configs/sconet/sconet_scoliosis1k.yaml`, and then run this command:
22
```shell
23
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 opengait/main.py --cfgs configs/sconet/sconet_scoliosis1k.yaml --phase train
24
```
25
26
27
## Process from RAW dataset
28
29
### Preprocess the dataset (Optional)
30
Download the raw dataset from the [official link](https://zhouzi180.github.io/Scoliosis1K). You will get two compressed files, i.e. `Scoliosis1K-raw.zip`, and `Scoliosis1K-pkl.zip`.
31
We recommend using our provided pickle files for convenience, or process raw dataset into pickle by this command:
32
```shell
33
python datasets/pretreatment.py --input_path Scoliosis1K_raw --output_path Scoliosis1K-pkl
34
```