|
a |
|
b/datasets/Scoliosis1K/README.md |
|
|
1 |
# Tutorial for [Scoliosis1K](https://zhouzi180.github.io/Scoliosis1K) |
|
|
2 |
|
|
|
3 |
## Download the Scoliosis1K dataset |
|
|
4 |
Download the dataset from the [link](https://zhouzi180.github.io/Scoliosis1K). |
|
|
5 |
decompress these two file by following command: |
|
|
6 |
```shell |
|
|
7 |
unzip -P password Scoliosis1K-pkl.zip | xargs -n1 tar xzvf |
|
|
8 |
``` |
|
|
9 |
password should be obtained by signing [agreement](https://zhouzi180.github.io/Scoliosis1K/static/resources/Scoliosis1KAgreement.pdf) and sending to email (12331257@mail.sustech.edu.cn) |
|
|
10 |
|
|
|
11 |
Then you will get Scoliosis1K formatted as: |
|
|
12 |
``` |
|
|
13 |
DATASET_ROOT/ |
|
|
14 |
00000 (subject)/ |
|
|
15 |
positive (category)/ |
|
|
16 |
000-180 (view)/ |
|
|
17 |
000.pkl (contains all frames) |
|
|
18 |
...... |
|
|
19 |
``` |
|
|
20 |
## Train the dataset |
|
|
21 |
Modify the `dataset_root` in `configs/sconet/sconet_scoliosis1k.yaml`, and then run this command: |
|
|
22 |
```shell |
|
|
23 |
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 opengait/main.py --cfgs configs/sconet/sconet_scoliosis1k.yaml --phase train |
|
|
24 |
``` |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
## Process from RAW dataset |
|
|
28 |
|
|
|
29 |
### Preprocess the dataset (Optional) |
|
|
30 |
Download the raw dataset from the [official link](https://zhouzi180.github.io/Scoliosis1K). You will get two compressed files, i.e. `Scoliosis1K-raw.zip`, and `Scoliosis1K-pkl.zip`. |
|
|
31 |
We recommend using our provided pickle files for convenience, or process raw dataset into pickle by this command: |
|
|
32 |
```shell |
|
|
33 |
python datasets/pretreatment.py --input_path Scoliosis1K_raw --output_path Scoliosis1K-pkl |
|
|
34 |
``` |