Switch to unified view

a b/datasets/SUSTech1K/README.md
1
# Tutorial for [SUSTech1K](https://lidargait.github.io)
2
3
## Download the SUSTech1K dataset
4
Download the dataset from the [link](https://lidargait.github.io).
5
decompress these two file by following command:
6
```shell
7
unzip -P password SUSTech1K-pkl.zip   | xargs -n1 tar xzvf
8
```
9
password should be obtained by signing [agreement](https://lidargait.github.io/static/resources/SUSTech1KAgreement.pdf) and sending to email (shencf2019@mail.sustech.edu.cn)
10
11
Then you will get SUSTech1K formatted as:
12
```
13
SUSTech1K-Released-pkl
14
├── 0000                            # Identity
15
│   ├── 00-nm                       # sequence_number - sequence_covariates
16
│   │   ├── 000                     # viewpoint_angle
17
│   │   │   ├── 00-000-LiDAR-PCDs.pkl                 # (10Hz) Point Clouds 
18
│   │   │   ├── 01-000-LiDAR-PCDs_depths.pkl          # (10Hz) Projected Depths from Point Clouds
19
│   │   │   ├── 02-000-LiDAR-PCDs_sils.pkl            # (10Hz) Projected Silhouettes from Point Clouds
20
│   │   │   ├── 03-000-Camera-Pose.pkl                # (30Hz) Estimated Skeleton using ViTPose
21
│   │   │   ├── 04-000-Camera-Ratios-HW.pkl           # (30Hz) (H,W) of Camera Images
22
│   │   │   ├── 05-000-Camera-RGB_raw.pkl             # (30Hz) Raw Camera images (frames, 64, 64, 3) (if you want larger resolution, you can process SUSTech1K-Released-RAW by yourself using pretreatment_SUSTech1K.py 
23
│   │   │   ├── 06-000-Camera-Sils_aligned.pkl        # (30Hz) Aligned silhouettes
24
│   │   │   ├── 07-000-Camera-Sils_raw.pkl            # (30Hz) Estimated silhouettes without alignment
25
│   │   │   ├── 08-sync-000-LiDAR-PCDs.pkl            # (10Hz synchronized to Camera) Point Clouds, 
26
│   │   │   ├── 09-sync-000-LiDAR-PCDs_depths.pkl     # (10Hz synchronized to Camera) Projected Depths from Point Clouds
27
│   │   │   ├── 10-sync-000-LiDAR-PCDs_sils.pkl       # (10Hz synchronized to Camera) Projected Silhouettes from Point Clouds
28
│   │   │   ├── 11-sync-000-Camera-Pose.pkl           # (10Hz synchronized to LiDAR) Estimated Skeleton using ViTPose
29
│   │   │   ├── 12-sync-000-Camera-Ratios-HW.pkl      # (10Hz synchronized to LiDAR) (H,W) of Camera Images
30
│   │   │   ├── 13-sync-000-Camera-RGB_raw.pkl        # (10Hz synchronized to LiDAR) Raw Camera images (frames, 64, 64, 3)
31
│   │   │   ├── 14-sync-000-Camera-Sils_aligned.pkl   # (10Hz synchronized to LiDAR) Aligned silhouettes
32
│   │   │   └── 15-sync-000-Camera-Sils_raw.pkl       # (10Hz synchronized to LiDAR) Estimated silhouettes without alignment
33
                ......
34
            ......
35
        ......
36
    ......
37
```
38
39
## Train the dataset
40
Modify the `dataset_root` in `configs/lidargait/lidargait_sustech1k.yaml`, and then run this command:
41
```shell
42
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 opengait/main.py --cfgs configs/lidargait/lidargait_sustech1k.yaml --phase train
43
```
44
45
46
## Process from RAW dataset
47
48
### Preprocess the dataset (Optional)
49
Download the raw dataset from the [official link](https://lidargait.github.io). You will get two compressed files, i.e. `DATASET_DOWNLOAD.md5`, `SUSTeck1K-RAW.zip`, and `SUSTeck1K-pkl.zip`.
50
We recommend using our provided pickle files for convenience, or process raw dataset into pickle by this command:
51
```shell
52
python datasets/SUSTech1K/pretreatment_SUSTech1K.py -i SUSTech1K-Released-2023 -o SUSTech1K-pkl -n 8
53
```
54
55
### Projecting PointCloud into Depth image (Optional)
56
You can use our processed depth images, or you can process via the command:
57
```shell
58
python datasets/SUSTech1K/point2depth.py -i SUSTech1K-Released-2023/ -o SUSTech1K-Released-2023/ -n 8
59
```
60
We recommend using our provided depth images for convenience.
61