--- a +++ b/configs/sconet/sconet_scoliosis1k.yaml @@ -0,0 +1,101 @@ +data_cfg: + dataset_name: Scoliosis1K + dataset_root: your_path_of_Scoliosis1K-Released-pkl + dataset_partition: ./datasets/Scoliosis1K/Scoliosis1K_***.json + num_workers: 1 + remove_no_gallery: false # Remove probe if no gallery for it + test_dataset_name: Scoliosis1K + +evaluator_cfg: + enable_float16: true + restore_ckpt_strict: true + restore_hint: 20000 + save_name: ScoNet + eval_func: evaluate_scoliosis + sampler: + batch_shuffle: false + batch_size: 8 + sample_type: all_ordered # all indicates whole sequence used to test, while ordered means input sequence by its natural order; Other options: fixed_unordered + frames_all_limit: 720 # limit the number of sampled frames to prevent out of memory + metric: euc # cos + transform: + - type: BaseSilCuttingTransform + +loss_cfg: + - loss_term_weight: 1.0 + margin: 0.2 + type: TripletLoss + log_prefix: triplet + - loss_term_weight: 1.0 + scale: 16 + type: CrossEntropyLoss + log_prefix: softmax + log_accuracy: true + + +model_cfg: + model: ScoNet + backbone_cfg: + type: ResNet9 + block: BasicBlock + channels: # Layers configuration for automatically model construction + - 64 + - 128 + - 256 + - 512 + layers: + - 1 + - 1 + - 1 + - 1 + strides: + - 1 + - 2 + - 2 + - 1 + maxpool: false + SeparateFCs: + in_channels: 512 + out_channels: 256 + parts_num: 16 + SeparateBNNecks: + class_num: 3 + in_channels: 256 + parts_num: 16 + bin_num: + - 16 + +optimizer_cfg: + lr: 0.1 + momentum: 0.9 + solver: SGD + weight_decay: 0.0005 + +scheduler_cfg: + gamma: 0.1 + milestones: # Learning Rate Reduction at each milestones + - 10000 + - 14000 + - 18000 + scheduler: MultiStepLR +trainer_cfg: + enable_float16: true # half_percesion float for memory reduction and speedup + fix_BN: false + with_test: false + log_iter: 100 + restore_ckpt_strict: true + restore_hint: 0 + save_iter: 20000 + save_name: ScoNet + sync_BN: true + total_iter: 20000 + sampler: + batch_shuffle: true + batch_size: + - 8 # TripletSampler, batch_size[0] indicates Number of Identity + - 8 # batch_size[1] indicates Samples sequqnce for each Identity + frames_num_fixed: 30 # fixed frames number for training + sample_type: fixed_unordered # fixed control input frames number, unordered for controlling order of input tensor; Other options: unfixed_ordered or all_ordered + type: TripletSampler + transform: + - type: BaseSilCuttingTransform \ No newline at end of file