data_cfg:
dataset_name: SUSTech1K
dataset_root: your_path_of_SUSTech1K-Released-pkl
dataset_partition: ./datasets/SUSTech1K/SUSTech1K.json
num_workers: 4
data_in_use: [false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false]
remove_no_gallery: false # Remove probe if no gallery for it
test_dataset_name: SUSTech1K
evaluator_cfg:
enable_float16: true
restore_ckpt_strict: true
restore_hint: 40000
save_name: LidarGait
eval_func: evaluate_indoor_dataset #evaluate_Gait3D
sampler:
batch_shuffle: false
batch_size: 4
sample_type: all_ordered # all indicates whole sequence used to test, while ordered means input sequence by its natural order; Other options: fixed_unordered
frames_all_limit: 720 # limit the number of sampled frames to prevent out of memory
metric: euc # cos
transform:
- type: BaseSilTransform
loss_cfg:
- loss_term_weight: 1.0
margin: 0.2
type: TripletLoss
log_prefix: triplet
- loss_term_weight: 1.0
scale: 16
type: CrossEntropyLoss
log_prefix: softmax
log_accuracy: true
model_cfg:
model: Baseline
backbone_cfg:
type: ResNet9
in_channel: 3
block: BasicBlock
channels: # Layers configuration for automatically model construction
- 64
- 128
- 256
- 512
layers:
- 1
- 1
- 1
- 1
strides:
- 1
- 2
- 2
- 1
maxpool: false
SeparateFCs:
in_channels: 512
out_channels: 256
parts_num: 16
SeparateBNNecks:
class_num: 250
in_channels: 256
parts_num: 16
bin_num:
- 16
optimizer_cfg:
lr: 0.1
momentum: 0.9
solver: SGD
weight_decay: 0.0005
scheduler_cfg:
gamma: 0.1
milestones: # Learning Rate Reduction at each milestones
- 20000
- 30000
scheduler: MultiStepLR
trainer_cfg:
enable_float16: true # half_percesion float for memory reduction and speedup
fix_BN: false
with_test: true #true
log_iter: 100
restore_ckpt_strict: true
restore_hint: 0
save_iter: 5000
save_name: LidarGait
sync_BN: true
total_iter: 40000
sampler:
batch_shuffle: true
batch_size:
- 8 # TripletSampler, batch_size[0] indicates Number of Identity
- 8 # batch_size[1] indicates Samples sequqnce for each Identity
frames_num_fixed: 10 # fixed frames number for training
sample_type: fixed_unordered # fixed control input frames number, unordered for controlling order of input tensor; Other options: unfixed_ordered or all_ordered
type: TripletSampler
transform:
- type: BaseSilTransform