[fd9ef4]: / configs / gaitssb / pretrain_test_on_gait3d.yaml

Download this file

94 lines (88 with data), 2.4 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
data_cfg:
dataset_name: GaitLU-1M
dataset_root: your_path
dataset_partition: ./datasets/Gait3D/Gait3D.json
num_workers: 1
remove_no_gallery: false # Remove probe if no gallery for it
test_dataset_name: Gait3D
evaluator_cfg:
enable_float16: true
restore_ckpt_strict: true
restore_hint: 150000
save_name: GaitSSB_Pretrain
eval_func: evaluate_Gait3D
sampler:
batch_shuffle: false
batch_size: 4
sample_type: all_ordered # all indicates whole sequence used to test, while ordered means input sequence by its natural order; Other options: fixed_unordered
frames_all_limit: 720 # limit the number of sampled frames to prevent out of memory
metric: cos
transform:
- type: BaseSilCuttingTransform
loss_cfg:
- loss_term_weight: 1.0
scale: 16
type: CrossEntropyLoss
log_prefix: softmax1
log_accuracy: true
- loss_term_weight: 1.0
scale: 16
type: CrossEntropyLoss
log_prefix: softmax2
log_accuracy: true
model_cfg:
model: GaitSSB_Pretrain
backbone_cfg:
type: ResNet9
block: BasicBlock
channels: # Layers configuration for automatically model construction
- 64
- 128
- 256
- 512
layers:
- 1
- 1
- 1
- 1
strides:
- 1
- 2
- 2
- 1
maxpool: false
parts_num: 31
optimizer_cfg:
lr: 0.05
momentum: 0.9
solver: SGD
weight_decay: 0.0005
scheduler_cfg:
gamma: 0.1
milestones: # Learning Rate Reduction at each milestones
- 80000
- 120000
scheduler: MultiStepLR
trainer_cfg:
enable_float16: true # half_percesion float for memory reduction and speedup
fix_BN: false
with_test: false
log_iter: 100
restore_ckpt_strict: true
restore_hint: 0
save_iter: 10000
save_name: GaitSSB_Pretrain
sync_BN: true
total_iter: 150000
sampler:
batch_shuffle: true
batch_size:
- 8 # TripletSampler, batch_size[0] indicates Number of Identity
- 64 # batch_size[1] indicates Samples sequqnce for each Identity
frames_num_fixed: 16 # fixed frames number for training
sample_type: fixed_ordered # fixed control input frames number, unordered for controlling order of input tensor; Other options: unfixed_ordered or all_ordered
frames_skip_num: 4
type: BilateralSampler
transform:
- type: DA4GaitSSB
cutting: 10