[fd9ef4]: / configs / biggait / BigGait_CCPG.yaml

Download this file

150 lines (137 with data), 4.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
data_cfg:
dataset_name: CCPG
# TODO
dataset_root: your_path # use datasets/pretreatment_rgb.py for data preprocessing!
dataset_partition: ./datasets/CCPG/CCPG.json
data_in_use: [True, True] # images / real_ratios
num_workers: 8
remove_no_gallery: false # Remove probe if no gallery for it
test_dataset_name: CCPG
evaluator_cfg:
enable_float16: true
restore_ckpt_strict: True
restore_hint: 40000
save_name: BigGait__Dinov2_Gaitbase_Frame30
eval_func: evaluate_CCPG
sampler:
batch_shuffle: false
batch_size: 8 # GPUs number
sample_type: all_ordered # all indicates whole sequence used to test, while ordered means input sequence by its natural order; Other options: fixed_unordered
frames_all_limit: 250 # limit the number of sampled frames to prevent out of memory
metric: euc # cos
transform:
- type: BaseRgbTransform
- type: NoOperation
loss_cfg:
- loss_term_weight: 1.0
margin: 0.2
type: TripletLoss
log_prefix: triplet
- loss_term_weight: 1.0
scale: 16
type: CrossEntropyLoss
log_prefix: softmax
log_accuracy: true
model_cfg:
model: BigGait__Dinov2_Gaitbase
pretrained_dinov2: ./pretrained_LVMs/dinov2_vits14_pretrain.pth # DINOv2 Download Link: https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_pretrain.pth
pretrained_mask_branch: ./pretrained_LVMs/MaskBranch_vits14.pt # pretrained_mask_branch: None or MaskBranch Download Link: https://drive.google.com/drive/folders/1zrWPUsrbCpwxoLgfom3d2irgxkBqtXqc?usp=sharing
image_size: 224 # 448x224
sils_size: 32 # 64x32
Denoising_Branch:
source_dim: 1536
target_dim: 16
p: 0
softmax: True
Relu: True
Up: False
Appearance_Branch:
source_dim: 1536
target_dim: 16
p: 0
softmax: False
Relu: False
Up: False
Mask_Branch:
source_dim: 384
target_dim: 2
p: 0.5
softmax: True
Relu: False
Up: True
AttentionFusion:
in_channels: 64
squeeze_ratio: 16
feat_len: 2
backbone_cfg:
type: ResNet9
block: BasicBlock
in_channel: 1
channels: # Layers configuration for automatically model construction
- 64
- 128
- 256
- 512
layers:
- 1
- 1
- 1
- 1
strides:
- 1
- 2
- 2
- 1
maxpool: false
SeparateFCs:
in_channels: 512
out_channels: 256
parts_num: 16
SeparateBNNecks:
class_num: 100
in_channels: 256
parts_num: 16
bin_num:
- 16
optimizer_cfg:
lr: 0.1
momentum: 0.9
solver: SGD
weight_decay: 0.0005
scheduler_cfg:
gamma: 0.1
milestones: # Learning Rate Reduction at each milestones
- 15000
- 25000
- 30000
- 35000
scheduler: MultiStepLR
trainer_cfg:
find_unused_parameters: True
enable_float16: true # half_percesion float for memory reduction and speedup
fix_BN: false
log_iter: 100
with_test: true
restore_ckpt_strict: true
restore_hint: 0
save_iter: 10000
save_name: BigGait__Dinov2_Gaitbase_Frame30
sync_BN: true
total_iter: 40000
sampler:
batch_shuffle: true
batch_size:
- 8 # TripletSampler, batch_size[0] indicates Number of Identity
- 8 # batch_size[1] indicates Samples sequqnce for each Identity
frames_num_fixed: 30 # fixed frames number for training
frames_skip_num: 4
frames_num_max: 40 # max frames number for unfixed training
frames_num_min: 20 # min frames number for unfixed traing
sample_type: fixed_unordered # fixed control input frames number, unordered for controlling order of input tensor; Other options: unfixed_ordered or all_ordered
type: TripletSampler
transform:
- type: Compose
trf_cfg:
- type: RandomHorizontalFlip
- type: BaseRgbTransform
- type: NoOperation