|
a |
|
b/README.md |
|
|
1 |
# Prediction of total knee replacement using deep learning analysis of knee MRI |
|
|
2 |
|
|
|
3 |
## Project Overview |
|
|
4 |
This project implements deep learning models to predict total knee replacement using MRI analysis. Our models achieve up to 0.90 AUC using a combination of MRI and radiograph data, significantly outperforming traditional methods. The implementation supports multiple MRI sequence types (DESS, IW-TSE, T1-TSE) and includes a novel multi-input model architecture. |
|
|
5 |
|
|
|
6 |
## Table of Contents |
|
|
7 |
- [Prerequisites](#prerequisites) |
|
|
8 |
- [Installation](#installation) |
|
|
9 |
- [Model Weights](#model-weights) |
|
|
10 |
- [Data Preparation](#data-preparation) |
|
|
11 |
- [Usage](#usage) |
|
|
12 |
- [DESS Sequence](#dess-sequence) |
|
|
13 |
- [IW-TSE Sequence](#iw-tse-sequence) |
|
|
14 |
- [T1-TSE Sequence](#t1-tse-sequence) |
|
|
15 |
- [Multi-Input Model](#multi-input-model) |
|
|
16 |
- [Results](#results) |
|
|
17 |
- [Citation](#citation) |
|
|
18 |
|
|
|
19 |
## Prerequisites |
|
|
20 |
- Python 3.6 |
|
|
21 |
- CUDA-compatible GPU (recommended) |
|
|
22 |
- HDF5 dataset files |
|
|
23 |
- Required Python packages (install via `environment.yaml`) |
|
|
24 |
|
|
|
25 |
## Installation |
|
|
26 |
1. Clone this repository: |
|
|
27 |
```bash |
|
|
28 |
git clone https://github.com/denizlab/OAI-MRI-TKR.git |
|
|
29 |
``` |
|
|
30 |
|
|
|
31 |
2. Set up the Python environment: |
|
|
32 |
```bash |
|
|
33 |
conda env create -f environment.yaml |
|
|
34 |
conda activate tkr_mri_env |
|
|
35 |
``` |
|
|
36 |
|
|
|
37 |
## Model Weights |
|
|
38 |
Pre-trained weights from our 7-fold nested cross-validation are available at: |
|
|
39 |
[https://zenodo.org/records/11237172](https://zenodo.org/records/11237172) |
|
|
40 |
|
|
|
41 |
## Data Preparation |
|
|
42 |
### Dataset Requirements |
|
|
43 |
- OAI (Osteoarthritis Initiative) dataset access required |
|
|
44 |
- MOST (Multicenter Osteoarthritis Study) dataset access required |
|
|
45 |
- Contact respective organizations for data access permissions |
|
|
46 |
### Data Organization |
|
|
47 |
- Separate HDF5 files for each MRI sequence type (DESS, IW-TSE, T1-TSE) |
|
|
48 |
- CSV files for dataset splits and cohort information |
|
|
49 |
- Proper file structure for OAI and MOST datasets |
|
|
50 |
|
|
|
51 |
## Usage |
|
|
52 |
|
|
|
53 |
### DESS Sequence |
|
|
54 |
|
|
|
55 |
#### Training |
|
|
56 |
```bash |
|
|
57 |
python3 ./DESS/train.py \ |
|
|
58 |
--file_path /path/to/save/models \ |
|
|
59 |
--csv_path /path/to/split/csvs/DESS \ |
|
|
60 |
--file_folder /path/to/DESS/HDF5/files \ |
|
|
61 |
--val_fold [1-7] |
|
|
62 |
``` |
|
|
63 |
|
|
|
64 |
#### Evaluation Options |
|
|
65 |
|
|
|
66 |
1. Matched OAI Cohort: |
|
|
67 |
```bash |
|
|
68 |
python3 ./DESS/evaluate.py \ |
|
|
69 |
--model_path /path/to/saved/models \ |
|
|
70 |
--csv_path /path/to/split/csvs/DESS \ |
|
|
71 |
--file_folder /path/to/DESS/HDF5/files |
|
|
72 |
``` |
|
|
73 |
|
|
|
74 |
2. Internal OAI Test Set: |
|
|
75 |
```bash |
|
|
76 |
python3 ./DESS/Eval_OAI_DESS.py \ |
|
|
77 |
--model_path /path/to/saved/models \ |
|
|
78 |
--val_csv_path /path/to/split/csvs/DESS \ |
|
|
79 |
--test_csv_path /path/to/csvs/OAI_SAG_DESS_test.csv \ |
|
|
80 |
--file_folder /path/to/DESS/HDF5/files \ |
|
|
81 |
--vote [True/False] |
|
|
82 |
``` |
|
|
83 |
|
|
|
84 |
3. MOST Test Set: |
|
|
85 |
```bash |
|
|
86 |
python3 ./DESS/Eval_MOST_DESS.py \ |
|
|
87 |
--model_path /path/to/saved/models \ |
|
|
88 |
--val_csv_path /path/to/split/csvs/DESS \ |
|
|
89 |
--test_csv_path /path/to/csvs/MOST_MRI_test.csv \ |
|
|
90 |
--train_file_folder /path/to/DESS/HDF5/files \ |
|
|
91 |
--file_folder /path/to/MOST/HDF5/files \ |
|
|
92 |
--vote [True/False] \ |
|
|
93 |
--contrast [HR_COR_STIR/SAG_PD_FAT_SAT] |
|
|
94 |
``` |
|
|
95 |
|
|
|
96 |
### IW-TSE Sequence |
|
|
97 |
|
|
|
98 |
#### Training |
|
|
99 |
```bash |
|
|
100 |
python3 ./IW-TSE/train.py \ |
|
|
101 |
--file_path /path/to/save/models \ |
|
|
102 |
--csv_path /path/to/split/csvs/IW-TSE \ |
|
|
103 |
--file_folder /path/to/IW-TSE/HDF5/files \ |
|
|
104 |
--val_fold [1-7] |
|
|
105 |
``` |
|
|
106 |
|
|
|
107 |
#### Evaluation Options |
|
|
108 |
|
|
|
109 |
1. Matched OAI Cohort: |
|
|
110 |
```bash |
|
|
111 |
python3 ./IW-TSE/evaluate.py \ |
|
|
112 |
--model_path /path/to/saved/models \ |
|
|
113 |
--csv_path /path/to/split/csvs/IW-TSE \ |
|
|
114 |
--file_folder /path/to/IW-TSE/HDF5/files |
|
|
115 |
``` |
|
|
116 |
|
|
|
117 |
2. Internal OAI Test Set: |
|
|
118 |
```bash |
|
|
119 |
python3 ./IW-TSE/Eval_OAI_IWTSE.py \ |
|
|
120 |
--model_path /path/to/saved/models \ |
|
|
121 |
--val_csv_path /path/to/split/csvs/IW-TSE \ |
|
|
122 |
--test_csv_path /path/to/csvs/OAI_SAG_TSE_test.csv \ |
|
|
123 |
--file_folder /path/to/IW-TSE/HDF5/files \ |
|
|
124 |
--vote [True/False] |
|
|
125 |
``` |
|
|
126 |
|
|
|
127 |
3. MOST Test Set: |
|
|
128 |
```bash |
|
|
129 |
python3 ./IW-TSE/Eval_MOST_IWTSE.py \ |
|
|
130 |
--model_path /path/to/saved/models \ |
|
|
131 |
--val_csv_path /path/to/split/csvs/IW-TSE \ |
|
|
132 |
--test_csv_path /path/to/csvs/MOST_MRI_test.csv \ |
|
|
133 |
--train_file_folder /path/to/IW-TSE/HDF5/files \ |
|
|
134 |
--file_folder /path/to/MOST/HDF5/files \ |
|
|
135 |
--vote [True/False] \ |
|
|
136 |
--contrast [HR_COR_STIR/SAG_PD_FAT_SAT] |
|
|
137 |
``` |
|
|
138 |
|
|
|
139 |
### T1-TSE Sequence |
|
|
140 |
|
|
|
141 |
#### Training |
|
|
142 |
```bash |
|
|
143 |
python3 ./T1-TSE/train.py \ |
|
|
144 |
--file_path /path/to/save/models \ |
|
|
145 |
--csv_path /path/to/split/csvs/T1-TSE \ |
|
|
146 |
--file_folder /path/to/T1-TSE/HDF5/files \ |
|
|
147 |
--val_fold [1-7] |
|
|
148 |
``` |
|
|
149 |
|
|
|
150 |
#### Evaluation Options |
|
|
151 |
|
|
|
152 |
1. Matched OAI Cohort: |
|
|
153 |
```bash |
|
|
154 |
python3 ./T1-TSE/evaluate.py \ |
|
|
155 |
--model_path /path/to/saved/models \ |
|
|
156 |
--csv_path /path/to/split/csvs/T1-TSE \ |
|
|
157 |
--file_folder /path/to/T1-TSE/HDF5/files |
|
|
158 |
``` |
|
|
159 |
|
|
|
160 |
2. Internal OAI Test Set: |
|
|
161 |
```bash |
|
|
162 |
python3 ./T1-TSE/Eval_OAI_T1TSE.py \ |
|
|
163 |
--model_path /path/to/saved/models \ |
|
|
164 |
--val_csv_path /path/to/split/csvs/T1-TSE \ |
|
|
165 |
--test_csv_path /path/to/csvs/OAI_COR_TSE_test.csv \ |
|
|
166 |
--file_folder /path/to/T1-TSE/HDF5/files \ |
|
|
167 |
--vote [True/False] |
|
|
168 |
``` |
|
|
169 |
|
|
|
170 |
3. MOST Test Set: |
|
|
171 |
```bash |
|
|
172 |
python3 ./T1-TSE/Eval_MOST_T1TSE.py \ |
|
|
173 |
--model_path /path/to/saved/models \ |
|
|
174 |
--val_csv_path /path/to/split/csvs/T1-TSE \ |
|
|
175 |
--test_csv_path /path/to/csvs/MOST_MRI_test.csv \ |
|
|
176 |
--train_file_folder /path/to/T1-TSE/HDF5/files \ |
|
|
177 |
--file_folder /path/to/MOST/HDF5/files \ |
|
|
178 |
--vote [True/False] \ |
|
|
179 |
--contrast [HR_COR_STIR/SAG_PD_FAT_SAT] |
|
|
180 |
``` |
|
|
181 |
|
|
|
182 |
### Multi-Input Model |
|
|
183 |
|
|
|
184 |
#### Training |
|
|
185 |
```bash |
|
|
186 |
python3 ./MI-DESS_IWTSE/train.py \ |
|
|
187 |
--file_path /path/to/save/models \ |
|
|
188 |
--csv_path /path/to/split/csvs/DESS \ |
|
|
189 |
--file_folder1 /path/to/IW-TSE/HDF5/files \ |
|
|
190 |
--file_folder2 /path/to/DESS/HDF5/files \ |
|
|
191 |
--val_fold [1-7] \ |
|
|
192 |
--IWdataset_csv /path/to/csvs/HDF5_00_cohort_2_prime.csv \ |
|
|
193 |
--DESSdataset_csv /path/to/csvs/HDF5_00_SAG_3D_DESScohort_2_prime.csv |
|
|
194 |
``` |
|
|
195 |
|
|
|
196 |
#### Evaluation Options |
|
|
197 |
|
|
|
198 |
1. Matched OAI Cohort: |
|
|
199 |
```bash |
|
|
200 |
python3 ./MI-DESS_IWTSE/evaluate.py \ |
|
|
201 |
--model_path /path/to/saved/models \ |
|
|
202 |
--csv_path /path/to/split/csvs/DESS \ |
|
|
203 |
--file_folder1 /path/to/IW-TSE/HDF5/files \ |
|
|
204 |
--file_folder2 /path/to/DESS/HDF5/files \ |
|
|
205 |
--IWdataset_csv /path/to/csvs/HDF5_00_cohort_2_prime.csv \ |
|
|
206 |
--DESSdataset_csv /path/to/csvs/HDF5_00_SAG_3D_DESScohort_2_prime.csv |
|
|
207 |
``` |
|
|
208 |
|
|
|
209 |
2. Internal OAI Test Set: |
|
|
210 |
```bash |
|
|
211 |
python3 ./MI-DESS_IWTSE/Eval_OAI_MI.py \ |
|
|
212 |
--model_path /path/to/saved/models \ |
|
|
213 |
--val_csv_path /path/to/split/csvs/DESS \ |
|
|
214 |
--test_csv_path1 /path/to/csvs/OAI_SAG_TSE_test.csv \ |
|
|
215 |
--test_csv_path2 /path/to/csvs/OAI_SAG_DESS_test.csv \ |
|
|
216 |
--file_folder1 /path/to/IW-TSE/HDF5/files \ |
|
|
217 |
--file_folder2 /path/to/DESS/HDF5/files \ |
|
|
218 |
--vote [True/False] \ |
|
|
219 |
--IWdataset_csv /path/to/csvs/HDF5_00_cohort_2_prime.csv \ |
|
|
220 |
--DESSdataset_csv /path/to/csvs/HDF5_00_SAG_3D_DESScohort_2_prime.csv |
|
|
221 |
``` |
|
|
222 |
|
|
|
223 |
## Results |
|
|
224 |
|
|
|
225 |
### Model Performance |
|
|
226 |
|
|
|
227 |
**Table 1: Receiver operator characteristic analysis with areas under the curve (AUC) and area under the precision-recall curve (AUPRC) evaluating the diagnostic performance of the models to predict total knee replacement (TKR) using sevenfold nested cross-validation on the training a validation group in the OAI database.** |
|
|
228 |
|
|
|
229 |
| Model | AUC (95% CI) | p value | AUPRC (95% CI) | Sensitivity (%) (95% CI) | Specificity (%) (95% CI) | |
|
|
230 |
|-------|--------------|----------|----------------|-------------------------|-------------------------| |
|
|
231 |
| **MLP model** | |
|
|
232 |
| Traditional | 0.77 (0.74, 0.81) | Reference | 0.76 (0.71, 0.81) | 73 (68, 77) | 73 (68, 78) | |
|
|
233 |
| **CNN models** | |
|
|
234 |
| DESS | 0.88 (0.86, 0.91) | <0.001 | 0.87 (0.83, 0.91) | 82 (78, 86) | 81 (77, 85) | |
|
|
235 |
| FS-IW-TSE | 0.86 (0.84, 0.89) | <0.001 | 0.87 (0.84, 0.90) | 77 (73,82) | 84 (80, 87) | |
|
|
236 |
| Multi-input MRI | 0.85 (0.82, 0.88) | <0.001 | 0.85 (0.81, 0.89) | 79 (75, 83) | 79 (74, 83) | |
|
|
237 |
| IW-TSE | 0.87 (0.84, 0.90) | <0.001 | 0.87 (0.84, 0.90) | 82 (78, 86) | 78 (73, 82) | |
|
|
238 |
| Radiograph | 0.87 (0.84, 0.89) | <0.001 | 0.87 (0.84, 0.90) | 81 (76, 85) | 80 (76, 84) | |
|
|
239 |
| **Ensemble models** | |
|
|
240 |
| MRI | 0.89 (0.87, 0.91) | <0.001 | 0.89 (0.87, 0.91) | 79 (75, 83) | 86 (82, 89) | |
|
|
241 |
| MRI and radiograph | 0.90 (0.87, 0.92) | <0.001 | 0.90 (0.87, 0.93) | 80 (76, 84) | 85 (81, 88) | |
|
|
242 |
|
|
|
243 |
Key findings from our results: |
|
|
244 |
- All CNN and ensemble models significantly outperformed the traditional MLP model (p < 0.001) |
|
|
245 |
- The MRI and radiograph ensemble model achieved the highest performance with AUC of 0.90 (95% CI: 0.87-0.92) |
|
|
246 |
- DESS sequence alone showed strong performance with AUC of 0.88 (95% CI: 0.86-0.91) |
|
|
247 |
|
|
|
248 |
|
|
|
249 |
|
|
|
250 |
## Citation |
|
|
251 |
If you use this code in your research, please cite our paper: |
|
|
252 |
[https://www.nature.com/articles/s41598-023-33934-1](https://www.nature.com/articles/s41598-023-33934-1) |
|
|
253 |
|
|
|
254 |
```bibtex |
|
|
255 |
@article{rajamohan2023prediction, |
|
|
256 |
title={Prediction of total knee replacement using deep learning analysis of knee MRI}, |
|
|
257 |
author={Rajamohan, Haresh Rengaraj and Wang, Tianyu and Leung, Kevin and Chang, Gregory and Cho, Kyunghyun and Kijowski, Richard and Deniz, Cem M}, |
|
|
258 |
journal={Scientific reports}, |
|
|
259 |
volume={13}, |
|
|
260 |
number={1}, |
|
|
261 |
pages={6922}, |
|
|
262 |
year={2023}, |
|
|
263 |
publisher={Nature Publishing Group UK London} |
|
|
264 |
} |
|
|
265 |
``` |