|
a |
|
b/IW-TSE/train.py |
|
|
1 |
# ============================================================================== |
|
|
2 |
# Copyright (C) 2023 Haresh Rengaraj Rajamohan, Tianyu Wang, Kevin Leung, |
|
|
3 |
# Gregory Chang, Kyunghyun Cho, Richard Kijowski & Cem M. Deniz |
|
|
4 |
# |
|
|
5 |
# This file is part of OAI-MRI-TKR |
|
|
6 |
# |
|
|
7 |
# This program is free software: you can redistribute it and/or modify |
|
|
8 |
# it under the terms of the GNU Affero General Public License as published |
|
|
9 |
# by the Free Software Foundation, either version 3 of the License, or |
|
|
10 |
# (at your option) any later version. |
|
|
11 |
|
|
|
12 |
# This program is distributed in the hope that it will be useful, |
|
|
13 |
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
14 |
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
|
15 |
# GNU Affero General Public License for more details. |
|
|
16 |
|
|
|
17 |
# You should have received a copy of the GNU Affero General Public License |
|
|
18 |
# along with this program. If not, see <https://www.gnu.org/licenses/>. |
|
|
19 |
# ============================================================================== |
|
|
20 |
#!/usr/bin/env python3 |
|
|
21 |
import h5py |
|
|
22 |
import os.path |
|
|
23 |
import numpy as np |
|
|
24 |
import pandas as pd |
|
|
25 |
import math |
|
|
26 |
import matplotlib |
|
|
27 |
matplotlib.use('Agg') |
|
|
28 |
|
|
|
29 |
import matplotlib.pyplot as plt |
|
|
30 |
import tensorflow as tf |
|
|
31 |
#from sklearn.model_selection import StratifiedKFold |
|
|
32 |
from ModelResnet3D import generate_model |
|
|
33 |
from DataGenerator import DataGenerator |
|
|
34 |
|
|
|
35 |
#from keras.models import Sequential |
|
|
36 |
#from keras.optimizers import SGD, Adam |
|
|
37 |
#from keras.layers import Dropout, Dense, Conv3D, MaxPooling3D, GlobalAveragePooling3D, Activation, BatchNormalization,Flatten |
|
|
38 |
from keras.callbacks import LearningRateScheduler, TensorBoard, EarlyStopping, ModelCheckpoint, Callback |
|
|
39 |
from sklearn.metrics import roc_auc_score |
|
|
40 |
|
|
|
41 |
tf.app.flags.DEFINE_boolean('batch_norm', True, 'Use BN or not') |
|
|
42 |
tf.app.flags.DEFINE_float('lr', 0.0001, 'Initial learning rate.') |
|
|
43 |
tf.app.flags.DEFINE_integer('filters_in_last', 128, 'Number of filters on the last layer') |
|
|
44 |
tf.app.flags.DEFINE_float('dr',0.0, 'Dropout rate when training.') |
|
|
45 |
tf.app.flags.DEFINE_string('input_file','/gpfs/data/denizlab/Datasets/OAI/SAG_IW_TSE/dataBefore201807/data_SAG_IW_TSE.hdf5', 'File to read data') |
|
|
46 |
tf.app.flags.DEFINE_string('file_path', '/gpfs/data/denizlab/Users/hrr288/Radiology_test/', 'Main Folder to Save outputs') |
|
|
47 |
tf.app.flags.DEFINE_integer('val_fold', 1, 'Fold for cv') |
|
|
48 |
tf.app.flags.DEFINE_string('file_folder','/gpfs/data/denizlab/Datasets/OAI/SAG_IW_TSE/', 'Path to HDF5 radiographs') |
|
|
49 |
tf.app.flags.DEFINE_string('csv_path', '/gpfs/data/denizlab/Users/hrr288/TSE_dataset/', 'Folder with the fold splits') |
|
|
50 |
|
|
|
51 |
FLAGS = tf.app.flags.FLAGS |
|
|
52 |
|
|
|
53 |
class auc_Histories(Callback): |
|
|
54 |
def on_train_begin(self, logs={}): |
|
|
55 |
self.aucs = [] |
|
|
56 |
self.losses = [] |
|
|
57 |
|
|
|
58 |
def on_train_end(self, logs={}): |
|
|
59 |
return |
|
|
60 |
|
|
|
61 |
def on_epoch_begin(self, epoch, logs={}): |
|
|
62 |
return |
|
|
63 |
|
|
|
64 |
def on_epoch_end(self, epoch, logs={}): |
|
|
65 |
self.losses.append(logs.get('loss')) |
|
|
66 |
y_pred = self.model.predict(self.model.validation_data) |
|
|
67 |
self.aucs.append(roc_auc_score(self.model.validation_data[1], y_pred)) |
|
|
68 |
return |
|
|
69 |
|
|
|
70 |
def on_batch_begin(self, batch, logs={}): |
|
|
71 |
return |
|
|
72 |
|
|
|
73 |
def on_batch_end(self, batch, logs={}): |
|
|
74 |
return |
|
|
75 |
|
|
|
76 |
|
|
|
77 |
|
|
|
78 |
class roc_callback(Callback): |
|
|
79 |
def __init__(self,index,val_fold): |
|
|
80 |
_params = {'dim': (384,384,36), |
|
|
81 |
'batch_size': 4, |
|
|
82 |
'n_classes': 2, |
|
|
83 |
'n_channels': 1, |
|
|
84 |
'shuffle': False, |
|
|
85 |
'normalize' : True, |
|
|
86 |
'randomCrop' : False, |
|
|
87 |
'randomFlip' : False, |
|
|
88 |
'flipProbability' : -1} |
|
|
89 |
self.x = DataGenerator(directory = FLAGS.csv_path+'Fold_'+str(val_fold)+'/CV_'+str(index)+'_train.csv',file_folder=FLAGS.file_folder, **_params) |
|
|
90 |
self.x_val = DataGenerator(directory = FLAGS.csv_path+'Fold_'+str(val_fold)+'/CV_'+str(index)+'_val.csv',file_folder=FLAGS.file_folder, **_params) |
|
|
91 |
self.y = pd.read_csv(FLAGS.csv_path+'Fold_'+str(val_fold)+'/CV_'+str(index)+'_train.csv').Label |
|
|
92 |
self.y_val = pd.read_csv(FLAGS.csv_path+'Fold_'+str(val_fold)+'/CV_'+str(index)+'_val.csv').Label |
|
|
93 |
self.auc = [] |
|
|
94 |
self.val_auc = [] |
|
|
95 |
self.losses = [] |
|
|
96 |
self.val_losses = [] |
|
|
97 |
|
|
|
98 |
def on_train_begin(self, logs={}): |
|
|
99 |
return |
|
|
100 |
|
|
|
101 |
def on_train_end(self, logs={}): |
|
|
102 |
return |
|
|
103 |
|
|
|
104 |
def on_epoch_begin(self, epoch, logs={}): |
|
|
105 |
return |
|
|
106 |
|
|
|
107 |
def on_epoch_end(self, epoch, logs={}): |
|
|
108 |
self.losses.append(logs.get('loss')) |
|
|
109 |
self.val_losses.append(logs.get('val_loss')) |
|
|
110 |
y_pred = self.model.predict_generator(self.x) |
|
|
111 |
y_true = self.y[:len(y_pred)] |
|
|
112 |
roc = roc_auc_score(y_true, y_pred) |
|
|
113 |
|
|
|
114 |
y_pred_val = self.model.predict_generator(self.x_val) |
|
|
115 |
y_true_val = self.y_val[:len(y_pred_val)] |
|
|
116 |
roc_val = roc_auc_score(y_true_val, y_pred_val) |
|
|
117 |
self.auc.append(roc) |
|
|
118 |
self.val_auc.append(roc_val) |
|
|
119 |
#print(len(y_true),len(y_true_val)) |
|
|
120 |
print('\rroc-auc: %s - roc-auc_val: %s' % (str(round(roc,4)),str(round(roc_val,4))),end=100*' '+'\n') |
|
|
121 |
return |
|
|
122 |
|
|
|
123 |
def on_batch_begin(self, batch, logs={}): |
|
|
124 |
return |
|
|
125 |
|
|
|
126 |
def on_batch_end(self, batch, logs={}): |
|
|
127 |
return |
|
|
128 |
|
|
|
129 |
''' |
|
|
130 |
Def: Code to plot loss curves |
|
|
131 |
Params: history = keras output from training |
|
|
132 |
loss_path = path to save curve |
|
|
133 |
''' |
|
|
134 |
def plot_loss_curves(history, loss_path): #, i): |
|
|
135 |
f = plt.figure() |
|
|
136 |
plt.plot(history.history['loss']) |
|
|
137 |
plt.plot(history.history['val_loss']) |
|
|
138 |
plt.title('model loss') |
|
|
139 |
plt.ylabel('loss') |
|
|
140 |
plt.xlabel('epoch') |
|
|
141 |
plt.legend(['train', 'validation'], loc='upper left') |
|
|
142 |
#plt.show() |
|
|
143 |
#path = '/data/kl2596/curves/loss/' + loss_path + '.jpeg' |
|
|
144 |
f.savefig(loss_path) |
|
|
145 |
|
|
|
146 |
|
|
|
147 |
''' |
|
|
148 |
Def: Code to plot accuracy curves |
|
|
149 |
Params: history = keras output from training |
|
|
150 |
acc_path = path to save curve |
|
|
151 |
''' |
|
|
152 |
def plot_accuracy_curves(history, acc_path): #, i): |
|
|
153 |
f = plt.figure() |
|
|
154 |
plt.plot(history.history['acc']) |
|
|
155 |
plt.plot(history.history['val_acc']) |
|
|
156 |
plt.title('model accuracy') |
|
|
157 |
plt.ylabel('acc') |
|
|
158 |
plt.xlabel('epoch') |
|
|
159 |
plt.legend(['train', 'validation'], loc='upper left') |
|
|
160 |
#plt.show() |
|
|
161 |
#path = '/data/kl2596/curves/accuracy/' + acc_path + '.jpeg' |
|
|
162 |
f.savefig(acc_path) |
|
|
163 |
|
|
|
164 |
|
|
|
165 |
def plot_auc_curves(auc_history, acc_path): #, i): |
|
|
166 |
f = plt.figure() |
|
|
167 |
plt.plot(auc_history.auc) |
|
|
168 |
plt.plot(auc_history.val_auc) |
|
|
169 |
plt.title('model AUC') |
|
|
170 |
plt.ylabel('auc') |
|
|
171 |
plt.xlabel('epoch') |
|
|
172 |
plt.legend(['train', 'validation'], loc='upper left') |
|
|
173 |
#plt.show() |
|
|
174 |
#path = '/data/kl2596/curves/accuracy/' + acc_path + '.jpeg' |
|
|
175 |
f.savefig(acc_path) |
|
|
176 |
|
|
|
177 |
def train_model(model, train_data, val_data, path, index,val_fold): |
|
|
178 |
#model.summary() |
|
|
179 |
|
|
|
180 |
# Early Stopping callback that can be found on Keras website |
|
|
181 |
|
|
|
182 |
# Create path to save weights with model checkpoint |
|
|
183 |
weights_path = path + 'weights-{epoch:02d}-{val_loss:.2f}-{val_acc:.2f}-{loss:.2f}-{acc:.2f}.hdf5' |
|
|
184 |
model_checkpoint = ModelCheckpoint(weights_path, monitor = 'val_loss', save_best_only = True, |
|
|
185 |
verbose=0, period=1) |
|
|
186 |
|
|
|
187 |
# Save loss and accuracy curves using Tensorboard |
|
|
188 |
tensorboard_callback = TensorBoard(log_dir = path, |
|
|
189 |
histogram_freq = 0, |
|
|
190 |
write_graph = False, |
|
|
191 |
write_grads = False, |
|
|
192 |
write_images = False) |
|
|
193 |
|
|
|
194 |
auc_history = roc_callback(index,val_fold) |
|
|
195 |
#es = EarlyStopping(monitor='val_auc', mode='max', verbose=1, patience=50) |
|
|
196 |
callbacks_list = [model_checkpoint, tensorboard_callback, auc_history] |
|
|
197 |
#es = EarlyStopping(monitor='val_auc', mode='max', verbose=1, patience=150) |
|
|
198 |
history = model.fit_generator(generator = train_data, validation_data = val_data, epochs=10, |
|
|
199 |
#use_multiprocessing=True, workers=6, |
|
|
200 |
callbacks = callbacks_list) |
|
|
201 |
|
|
|
202 |
accuracy = auc_history.val_auc |
|
|
203 |
print('*****************************') |
|
|
204 |
print('best auc:',np.max(accuracy)) |
|
|
205 |
print('average auc:',np.mean(accuracy)) |
|
|
206 |
print('*****************************') |
|
|
207 |
|
|
|
208 |
accuracy = history.history['val_acc'] |
|
|
209 |
print('*****************************') |
|
|
210 |
print('best acc:',np.max(accuracy)) |
|
|
211 |
print('average acc:',np.mean(accuracy)) |
|
|
212 |
print('*****************************') |
|
|
213 |
loss_path = path + 'loss_curve.jpeg' |
|
|
214 |
acc_path = path + 'acc_curve.jpeg' |
|
|
215 |
auc_path = path + 'auc_curve.jpeg' |
|
|
216 |
plot_loss_curves(history, loss_path) |
|
|
217 |
plot_accuracy_curves(history, acc_path) |
|
|
218 |
plot_auc_curves(auc_history, auc_path) |
|
|
219 |
#model.save_weights(weights_path) |
|
|
220 |
|
|
|
221 |
|
|
|
222 |
''' |
|
|
223 |
Def: Code to run stratified cross validation to train my network |
|
|
224 |
Params: num_of_folds = number of folds to cross validate |
|
|
225 |
lr = learning rate |
|
|
226 |
dr = dropout rate |
|
|
227 |
filters_in_last = number of filters in last convolutional layer (we tested 64 and 128) |
|
|
228 |
batch_norm = True or False for batch norm in model |
|
|
229 |
data = MRI images |
|
|
230 |
labels = labels corresponding to MRI images |
|
|
231 |
file_path = path to save network weights, curves, and tensorboard callbacks |
|
|
232 |
''' |
|
|
233 |
def cross_validation(val_fold, lr, dr, filters_in_last, file_path): |
|
|
234 |
train_params = {'dim': (384,384,36), |
|
|
235 |
'batch_size': 4, |
|
|
236 |
'n_classes': 2, |
|
|
237 |
'n_channels': 1, |
|
|
238 |
'shuffle': True, |
|
|
239 |
'normalize' : True, |
|
|
240 |
'randomCrop' : True, |
|
|
241 |
'randomFlip' : True, |
|
|
242 |
'flipProbability' : -1} |
|
|
243 |
|
|
|
244 |
val_params = {'dim': (384,384,36), |
|
|
245 |
'batch_size': 4, |
|
|
246 |
'n_classes': 2, |
|
|
247 |
'n_channels': 1, |
|
|
248 |
'shuffle': False, |
|
|
249 |
'normalize' : True, |
|
|
250 |
'randomCrop' : False, |
|
|
251 |
'randomFlip' : False, |
|
|
252 |
'flipProbability' : -1} |
|
|
253 |
|
|
|
254 |
model_path = file_path + 'Tnetres_Best/lr24ch32kerne773773_strde222_new_arch/' |
|
|
255 |
if not os.path.exists(model_path): |
|
|
256 |
os.makedirs(model_path) |
|
|
257 |
|
|
|
258 |
|
|
|
259 |
num_of_folds = 6 |
|
|
260 |
for i in range(num_of_folds): |
|
|
261 |
model = generate_model(learning_rate = 2 * 10 **(-4)) |
|
|
262 |
model.summary() |
|
|
263 |
print(train_params) |
|
|
264 |
#print(train_index, test_index) |
|
|
265 |
print('Running Fold', i+1, '/', num_of_folds) |
|
|
266 |
fold_path = model_path + 'Fold_' + str(val_fold) + '/CV_'+str(i+1)+'/' |
|
|
267 |
print(fold_path) |
|
|
268 |
|
|
|
269 |
if not os.path.exists(fold_path): |
|
|
270 |
os.makedirs(fold_path) |
|
|
271 |
|
|
|
272 |
training_generator = DataGenerator(directory = FLAGS.csv_path+'Fold_'+str(val_fold)+'/CV_'+str(i+1)+'_train.csv',file_folder=FLAGS.file_folder, **train_params) |
|
|
273 |
validation_generator = DataGenerator(directory = FLAGS.csv_path+'Fold_'+str(val_fold)+'/CV_'+str(i+1)+'_val.csv',file_folder=FLAGS.file_folder, **val_params) |
|
|
274 |
|
|
|
275 |
train_model(model=model, |
|
|
276 |
train_data = training_generator, |
|
|
277 |
val_data = validation_generator, |
|
|
278 |
path = fold_path, index = i+1,val_fold=val_fold) |
|
|
279 |
|
|
|
280 |
|
|
|
281 |
|
|
|
282 |
def main(argv=None): |
|
|
283 |
print('Begin training for fold ',FLAGS.val_fold) |
|
|
284 |
cross_validation(val_fold=FLAGS.val_fold, |
|
|
285 |
lr=FLAGS.lr, dr=FLAGS.dr, filters_in_last=FLAGS.filters_in_last, |
|
|
286 |
file_path = FLAGS.file_path) |
|
|
287 |
|
|
|
288 |
if __name__ == "__main__": |
|
|
289 |
tf.app.run() |
|
|
290 |
|
|
|
291 |
|