|
a |
|
b/IW-TSE/evaluate.py |
|
|
1 |
# ============================================================================== |
|
|
2 |
# Copyright (C) 2023 Haresh Rengaraj Rajamohan, Tianyu Wang, Kevin Leung, |
|
|
3 |
# Gregory Chang, Kyunghyun Cho, Richard Kijowski & Cem M. Deniz |
|
|
4 |
# |
|
|
5 |
# This file is part of OAI-MRI-TKR |
|
|
6 |
# |
|
|
7 |
# This program is free software: you can redistribute it and/or modify |
|
|
8 |
# it under the terms of the GNU Affero General Public License as published |
|
|
9 |
# by the Free Software Foundation, either version 3 of the License, or |
|
|
10 |
# (at your option) any later version. |
|
|
11 |
|
|
|
12 |
# This program is distributed in the hope that it will be useful, |
|
|
13 |
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
14 |
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
|
15 |
# GNU Affero General Public License for more details. |
|
|
16 |
|
|
|
17 |
# You should have received a copy of the GNU Affero General Public License |
|
|
18 |
# along with this program. If not, see <https://www.gnu.org/licenses/>. |
|
|
19 |
# ============================================================================== |
|
|
20 |
import numpy as np |
|
|
21 |
import pandas as pd |
|
|
22 |
import h5py |
|
|
23 |
import nibabel as nib |
|
|
24 |
import keras |
|
|
25 |
from mpl_toolkits.mplot3d import Axes3D |
|
|
26 |
import numpy as np |
|
|
27 |
import matplotlib.pyplot as plt |
|
|
28 |
import matplotlib.cm |
|
|
29 |
import matplotlib.colorbar |
|
|
30 |
import matplotlib.colors |
|
|
31 |
import pandas as pd |
|
|
32 |
import numpy as np |
|
|
33 |
from sklearn import metrics |
|
|
34 |
|
|
|
35 |
|
|
|
36 |
import os |
|
|
37 |
import tensorflow as tf |
|
|
38 |
|
|
|
39 |
|
|
|
40 |
from keras.models import load_model |
|
|
41 |
|
|
|
42 |
|
|
|
43 |
|
|
|
44 |
|
|
|
45 |
from sklearn.metrics import roc_auc_score,auc,roc_curve,average_precision_score |
|
|
46 |
|
|
|
47 |
|
|
|
48 |
|
|
|
49 |
|
|
|
50 |
from Augmentation import RandomCrop, CenterCrop, RandomFlip |
|
|
51 |
|
|
|
52 |
from DataGenerator import DataGenerator |
|
|
53 |
tf.app.flags.DEFINE_string('model_path', '/gpfs/data/denizlab/Users/hrr288/Radiology_test/Tnetres_Best/lr24ch32kerne773773_strde222_new_arch/', 'Folder with the models') |
|
|
54 |
tf.app.flags.DEFINE_string('csv_path', '/gpfs/data/denizlab/Users/hrr288/TSE_dataset/', 'Folder with the fold splits') |
|
|
55 |
tf.app.flags.DEFINE_string('result_path', './', 'Folder to save output csv with preds') |
|
|
56 |
tf.app.flags.DEFINE_string('file_folder','/gpfs/data/denizlab/Datasets/OAI/SAG_IW_TSE/', 'Path to IW TSE HDF5 radiographs') |
|
|
57 |
|
|
|
58 |
|
|
|
59 |
|
|
|
60 |
FLAGS = tf.app.flags.FLAGS |
|
|
61 |
|
|
|
62 |
def main(argv=None): |
|
|
63 |
|
|
|
64 |
|
|
|
65 |
base_path = FLAGS.model_path |
|
|
66 |
csv_path = FLAGS.csv_path |
|
|
67 |
|
|
|
68 |
# Choosing the model in each folder with lowest val loss |
|
|
69 |
|
|
|
70 |
models= {'fold_1':[],'fold_2':[],'fold_3':[],'fold_4':[],'fold_5':[],'fold_6':[],'fold_7':[]} |
|
|
71 |
for fold in np.arange(1,8): |
|
|
72 |
tmp_mod_list = [] |
|
|
73 |
for cv in np.arange(1,7): |
|
|
74 |
dir_1 = 'Fold_'+str(fold)+'/CV_'+str(cv)+'/' |
|
|
75 |
files_avai = os.listdir(base_path+dir_1) |
|
|
76 |
cands = [] |
|
|
77 |
cands_score = [] |
|
|
78 |
for fs in files_avai: |
|
|
79 |
if 'weights' not in fs: |
|
|
80 |
continue |
|
|
81 |
else: |
|
|
82 |
|
|
|
83 |
cands_score.append(float(fs.split('-')[2])) |
|
|
84 |
cands.append(dir_1+fs) |
|
|
85 |
ind_c = int(np.argmin(cands_score)) |
|
|
86 |
|
|
|
87 |
tmp_mod_list.append(cands[ind_c]) |
|
|
88 |
models['fold_'+str(fold)]=tmp_mod_list |
|
|
89 |
|
|
|
90 |
val_params = {'dim': (384,384,36), |
|
|
91 |
'batch_size': 1, |
|
|
92 |
'n_classes': 2, |
|
|
93 |
'n_channels': 1, |
|
|
94 |
'shuffle': False, |
|
|
95 |
'normalize' : True, |
|
|
96 |
'randomCrop' : False, |
|
|
97 |
'randomFlip' : False, |
|
|
98 |
'flipProbability' : -1} |
|
|
99 |
|
|
|
100 |
|
|
|
101 |
|
|
|
102 |
dfs = [] |
|
|
103 |
|
|
|
104 |
for i in np.arange(1,8): |
|
|
105 |
print("Fold_"+str(i)) |
|
|
106 |
validation_generator = DataGenerator(directory = csv_path+'Fold_'+str(i)+'/Fold_'+str(i)+'_test.csv', file_folder=FLAGS.file_folder, **val_params) |
|
|
107 |
df = pd.read_csv(csv_path+'Fold_'+str(i)+'/Fold_'+str(i)+'_test.csv') |
|
|
108 |
pred_arr = np.zeros(df.shape[0]) |
|
|
109 |
|
|
|
110 |
for j in np.arange(1,7): |
|
|
111 |
model = load_model(base_path+'/'+models['fold_'+str(i)][j-1]) |
|
|
112 |
|
|
|
113 |
s = model.predict_generator(validation_generator) |
|
|
114 |
|
|
|
115 |
pred_arr += np.squeeze(s) |
|
|
116 |
pred_arr = pred_arr/6 |
|
|
117 |
df["Preds"] = pred_arr |
|
|
118 |
dfs.append(df) |
|
|
119 |
|
|
|
120 |
|
|
|
121 |
|
|
|
122 |
|
|
|
123 |
|
|
|
124 |
|
|
|
125 |
|
|
|
126 |
full_df = pd.concat(dfs) |
|
|
127 |
full_df.to_csv(FLAGS.result_path+"OAI_DESS_results.csv") |
|
|
128 |
if __name__ == "__main__": |
|
|
129 |
tf.app.run() |
|
|
130 |
|
|
|
131 |
|