import os
import time
import joblib
import numpy as np
import os.path as osp
import tensorflow as tf
from baselines import logger
from collections import deque
from baselines.common import explained_variance
from baselines.common.runners import AbstractEnvRunner
import pickle
class Model(object):
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
nsteps, ent_coef, vf_coef, max_grad_norm):
sess = tf.get_default_session()
act_model = policy(sess, ob_space, ac_space, nbatch_act, 1, reuse=False)
train_model = policy(sess, ob_space, ac_space, nbatch_train, nsteps, reuse=True)
A = train_model.pdtype.sample_placeholder([None])
ADV = tf.placeholder(tf.float32, [None])
R = tf.placeholder(tf.float32, [None])
OLDNEGLOGPAC = tf.placeholder(tf.float32, [None])
OLDVPRED = tf.placeholder(tf.float32, [None])
LR = tf.placeholder(tf.float32, [])
CLIPRANGE = tf.placeholder(tf.float32, [])
neglogpac = train_model.pd.neglogp(A)
entropy = tf.reduce_mean(train_model.pd.entropy())
vpred = train_model.vf
vpredclipped = OLDVPRED + tf.clip_by_value(train_model.vf - OLDVPRED, - CLIPRANGE, CLIPRANGE)
vf_losses1 = tf.square(vpred - R)
vf_losses2 = tf.square(vpredclipped - R)
vf_loss = .5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2))
ratio = tf.exp(OLDNEGLOGPAC - neglogpac)
pg_losses = -ADV * ratio
pg_losses2 = -ADV * tf.clip_by_value(ratio, 1.0 - CLIPRANGE, 1.0 + CLIPRANGE)
pg_loss = tf.reduce_mean(tf.maximum(pg_losses, pg_losses2))
approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - OLDNEGLOGPAC))
clipfrac = tf.reduce_mean(tf.to_float(tf.greater(tf.abs(ratio - 1.0), CLIPRANGE)))
loss = pg_loss - entropy * ent_coef + vf_loss * vf_coef
with tf.variable_scope('model'):
params = tf.trainable_variables()
grads = tf.gradients(loss, params)
if max_grad_norm is not None:
grads, _grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
grads = list(zip(grads, params))
trainer = tf.train.AdamOptimizer(learning_rate=LR, epsilon=1e-5)
_train = trainer.apply_gradients(grads)
def train(lr, cliprange, obs, returns, masks, actions, values, neglogpacs, states=None):
advs = returns - values
advs = (advs - advs.mean()) / (advs.std() + 1e-8)
td_map = {train_model.X:obs, A:actions, ADV:advs, R:returns, LR:lr,
CLIPRANGE:cliprange, OLDNEGLOGPAC:neglogpacs, OLDVPRED:values}
if states is not None:
td_map[train_model.S] = states
td_map[train_model.M] = masks
return sess.run(
[pg_loss, vf_loss, entropy, approxkl, clipfrac, _train],
td_map
)[:-1]
self.loss_names = ['policy_loss', 'value_loss', 'policy_entropy', 'approxkl', 'clipfrac']
def save(save_path):
ps = sess.run(params)
joblib.dump(ps, save_path)
def load(load_path):
loaded_params = joblib.load(load_path)
restores = []
for p, loaded_p in zip(params, loaded_params):
restores.append(p.assign(loaded_p))
sess.run(restores)
# If you want to load weights, also save/load observation scaling inside VecNormalize
self.train = train
self.train_model = train_model
self.act_model = act_model
self.step = act_model.step
self.value = act_model.value
self.initial_state = act_model.initial_state
self.save = save
self.load = load
tf.global_variables_initializer().run(session=sess) #pylint: disable=E1101
class Runner(AbstractEnvRunner):
def __init__(self, *, env, model, nsteps, gamma, lam):
super().__init__(env=env, model=model, nsteps=nsteps)
self.lam = lam
self.gamma = gamma
def run(self):
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs = [],[],[],[],[],[]
mb_states = self.states
epinfos = []
for _ in range(self.nsteps):
actions, values, self.states, neglogpacs = self.model.step(self.obs, self.states, self.dones)
mb_obs.append(self.obs.copy())
mb_actions.append(actions)
mb_values.append(values)
mb_neglogpacs.append(neglogpacs)
mb_dones.append(self.dones)
self.obs[:], rewards, self.dones, infos = self.env.step(actions)
for info in infos:
maybeepinfo = info.get('episode')
if maybeepinfo: epinfos.append(maybeepinfo)
mb_rewards.append(rewards)
#batch of steps to batch of rollouts
mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype)
mb_rewards = np.asarray(mb_rewards, dtype=np.float32)
mb_actions = np.asarray(mb_actions)
mb_values = np.asarray(mb_values, dtype=np.float32)
mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32)
mb_dones = np.asarray(mb_dones, dtype=np.bool)
last_values = self.model.value(self.obs, self.states, self.dones)
#discount/bootstrap off value fn
mb_returns = np.zeros_like(mb_rewards)
mb_advs = np.zeros_like(mb_rewards)
lastgaelam = 0
for t in reversed(range(self.nsteps)):
if t == self.nsteps - 1:
nextnonterminal = 1.0 - self.dones
nextvalues = last_values
else:
nextnonterminal = 1.0 - mb_dones[t+1]
nextvalues = mb_values[t+1]
delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_values[t]
mb_advs[t] = lastgaelam = delta + self.gamma * self.lam * nextnonterminal * lastgaelam
mb_returns = mb_advs + mb_values
return (*map(sf01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs)),
mb_states, epinfos)
# obs, returns, masks, actions, values, neglogpacs, states = runner.run()
def sf01(arr):
"""
swap and then flatten axes 0 and 1
"""
s = arr.shape
return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:])
def constfn(val):
def f(_):
return val
return f
def learn(*, policy, env, nsteps, total_timesteps, ent_coef, lr,
vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95,
log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2,
save_interval=0, load_path=None):
if isinstance(lr, float): lr = constfn(lr)
else: assert callable(lr)
if isinstance(cliprange, float): cliprange = constfn(cliprange)
else: assert callable(cliprange)
total_timesteps = int(total_timesteps)
nenvs = env.num_envs
ob_space = env.observation_space
ac_space = env.action_space
nbatch = nenvs * nsteps
nbatch_train = nbatch // nminibatches
make_model = lambda : Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train,
nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
max_grad_norm=max_grad_norm)
if save_interval and logger.get_dir():
import cloudpickle
with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh:
fh.write(cloudpickle.dumps(make_model))
model = make_model()
if load_path is not None:
model.load(load_path)
checkdir = load_path[0:-5]
checkpoint = int(load_path.split('/')[-1])
if osp.exists(osp.join(checkdir, '%.5i_ob_rms.pkl' % checkpoint)):
with open(osp.join(checkdir, '%.5i_ob_rms.pkl' % checkpoint), 'rb') as ob_rms_fp:
env.ob_rms = pickle.load(ob_rms_fp)
print('observation rms file loaded')
runner = Runner(env=env, model=model, nsteps=nsteps, gamma=gamma, lam=lam)
epinfobuf = deque(maxlen=100)
tfirststart = time.time()
nupdates = total_timesteps//nbatch
for update in range(1, nupdates+1):
assert nbatch % nminibatches == 0
nbatch_train = nbatch // nminibatches
tstart = time.time()
frac = 1.0 - (update - 1.0) / nupdates
lrnow = lr(frac)
cliprangenow = cliprange(frac)
obs, returns, masks, actions, values, neglogpacs, states, epinfos = runner.run() #pylint: disable=E0632
epinfobuf.extend(epinfos)
mblossvals = []
if states is None: # nonrecurrent version
inds = np.arange(nbatch)
for _ in range(noptepochs):
np.random.shuffle(inds)
for start in range(0, nbatch, nbatch_train):
end = start + nbatch_train
mbinds = inds[start:end]
slices = (arr[mbinds] for arr in (obs, returns, masks, actions, values, neglogpacs))
mblossvals.append(model.train(lrnow, cliprangenow, *slices))
else: # recurrent version
assert nenvs % nminibatches == 0
envsperbatch = nenvs // nminibatches
envinds = np.arange(nenvs)
flatinds = np.arange(nenvs * nsteps).reshape(nenvs, nsteps)
envsperbatch = nbatch_train // nsteps
for _ in range(noptepochs):
np.random.shuffle(envinds)
for start in range(0, nenvs, envsperbatch):
end = start + envsperbatch
mbenvinds = envinds[start:end]
mbflatinds = flatinds[mbenvinds].ravel()
slices = (arr[mbflatinds] for arr in (obs, returns, masks, actions, values, neglogpacs))
mbstates = states[mbenvinds]
mblossvals.append(model.train(lrnow, cliprangenow, *slices, mbstates))
lossvals = np.mean(mblossvals, axis=0)
tnow = time.time()
fps = int(nbatch / (tnow - tstart))
if update % log_interval == 0 or update == 1:
ev = explained_variance(values, returns)
logger.logkv("serial_timesteps", update*nsteps)
logger.logkv("nupdates", update)
logger.logkv("total_timesteps", update*nbatch)
logger.logkv("fps", fps)
logger.logkv("explained_variance", float(ev))
logger.logkv('eprewmean', safemean([epinfo['r'] for epinfo in epinfobuf]))
logger.logkv('eplenmean', safemean([epinfo['l'] for epinfo in epinfobuf]))
logger.logkv('time_elapsed', tnow - tfirststart)
for (lossval, lossname) in zip(lossvals, model.loss_names):
logger.logkv(lossname, lossval)
logger.dumpkvs()
if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir():
checkdir = osp.join(logger.get_dir(), 'checkpoints')
os.makedirs(checkdir, exist_ok=True)
savepath = osp.join(checkdir, '%.5i'%update)
print('Saving to', savepath)
model.save(savepath)
# save running mean std
with open(osp.join(checkdir, '%.5i_ob_rms.pkl'%update), 'wb') as ob_rms_fp:
pickle.dump(env.ob_rms, ob_rms_fp)
with open(osp.join(checkdir, '%.5i_ret_rms.pkl'%update), 'wb') as ret_rms_fp:
pickle.dump(env.ret_rms, ret_rms_fp)
env.close()
return model
def safemean(xs):
return np.nan if len(xs) == 0 else np.mean(xs)