|
a |
|
b/submission/baselines/results_plotter.py |
|
|
1 |
import numpy as np |
|
|
2 |
import matplotlib |
|
|
3 |
matplotlib.use('TkAgg') # Can change to 'Agg' for non-interactive mode |
|
|
4 |
|
|
|
5 |
import matplotlib.pyplot as plt |
|
|
6 |
plt.rcParams['svg.fonttype'] = 'none' |
|
|
7 |
|
|
|
8 |
from baselines.bench.monitor import load_results |
|
|
9 |
|
|
|
10 |
X_TIMESTEPS = 'timesteps' |
|
|
11 |
X_EPISODES = 'episodes' |
|
|
12 |
X_WALLTIME = 'walltime_hrs' |
|
|
13 |
POSSIBLE_X_AXES = [X_TIMESTEPS, X_EPISODES, X_WALLTIME] |
|
|
14 |
EPISODES_WINDOW = 100 |
|
|
15 |
COLORS = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'purple', 'pink', |
|
|
16 |
'brown', 'orange', 'teal', 'coral', 'lightblue', 'lime', 'lavender', 'turquoise', |
|
|
17 |
'darkgreen', 'tan', 'salmon', 'gold', 'lightpurple', 'darkred', 'darkblue'] |
|
|
18 |
|
|
|
19 |
def rolling_window(a, window): |
|
|
20 |
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) |
|
|
21 |
strides = a.strides + (a.strides[-1],) |
|
|
22 |
return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) |
|
|
23 |
|
|
|
24 |
def window_func(x, y, window, func): |
|
|
25 |
yw = rolling_window(y, window) |
|
|
26 |
yw_func = func(yw, axis=-1) |
|
|
27 |
return x[window-1:], yw_func |
|
|
28 |
|
|
|
29 |
def ts2xy(ts, xaxis): |
|
|
30 |
if xaxis == X_TIMESTEPS: |
|
|
31 |
x = np.cumsum(ts.l.values) |
|
|
32 |
y = ts.r.values |
|
|
33 |
elif xaxis == X_EPISODES: |
|
|
34 |
x = np.arange(len(ts)) |
|
|
35 |
y = ts.r.values |
|
|
36 |
elif xaxis == X_WALLTIME: |
|
|
37 |
x = ts.t.values / 3600. |
|
|
38 |
y = ts.r.values |
|
|
39 |
else: |
|
|
40 |
raise NotImplementedError |
|
|
41 |
return x, y |
|
|
42 |
|
|
|
43 |
def plot_curves(xy_list, xaxis, title): |
|
|
44 |
plt.figure(figsize=(8,2)) |
|
|
45 |
maxx = max(xy[0][-1] for xy in xy_list) |
|
|
46 |
minx = 0 |
|
|
47 |
for (i, (x, y)) in enumerate(xy_list): |
|
|
48 |
color = COLORS[i] |
|
|
49 |
plt.scatter(x, y, s=2) |
|
|
50 |
x, y_mean = window_func(x, y, EPISODES_WINDOW, np.mean) #So returns average of last EPISODE_WINDOW episodes |
|
|
51 |
plt.plot(x, y_mean, color=color) |
|
|
52 |
plt.xlim(minx, maxx) |
|
|
53 |
plt.title(title) |
|
|
54 |
plt.xlabel(xaxis) |
|
|
55 |
plt.ylabel("Episode Rewards") |
|
|
56 |
plt.tight_layout() |
|
|
57 |
|
|
|
58 |
def plot_results(dirs, num_timesteps, xaxis, task_name): |
|
|
59 |
tslist = [] |
|
|
60 |
for dir in dirs: |
|
|
61 |
ts = load_results(dir) |
|
|
62 |
ts = ts[ts.l.cumsum() <= num_timesteps] |
|
|
63 |
tslist.append(ts) |
|
|
64 |
xy_list = [ts2xy(ts, xaxis) for ts in tslist] |
|
|
65 |
plot_curves(xy_list, xaxis, task_name) |
|
|
66 |
|
|
|
67 |
# Example usage in jupyter-notebook |
|
|
68 |
# from baselines import log_viewer |
|
|
69 |
# %matplotlib inline |
|
|
70 |
# log_viewer.plot_results(["./log"], 10e6, log_viewer.X_TIMESTEPS, "Breakout") |
|
|
71 |
# Here ./log is a directory containing the monitor.csv files |
|
|
72 |
|
|
|
73 |
def main(): |
|
|
74 |
import argparse |
|
|
75 |
import os |
|
|
76 |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
|
77 |
parser.add_argument('--dirs', help='List of log directories', nargs = '*', default=['./log']) |
|
|
78 |
parser.add_argument('--num_timesteps', type=int, default=int(10e6)) |
|
|
79 |
parser.add_argument('--xaxis', help = 'Varible on X-axis', default = X_TIMESTEPS) |
|
|
80 |
parser.add_argument('--task_name', help = 'Title of plot', default = 'Breakout') |
|
|
81 |
args = parser.parse_args() |
|
|
82 |
args.dirs = [os.path.abspath(dir) for dir in args.dirs] |
|
|
83 |
plot_results(args.dirs, args.num_timesteps, args.xaxis, args.task_name) |
|
|
84 |
plt.show() |
|
|
85 |
|
|
|
86 |
if __name__ == '__main__': |
|
|
87 |
main() |