Switch to side-by-side view

--- a
+++ b/submission/baselines/common/input.py
@@ -0,0 +1,30 @@
+import tensorflow as tf
+from gym.spaces import Discrete, Box
+
+def observation_input(ob_space, batch_size=None, name='Ob'):
+    '''
+    Build observation input with encoding depending on the 
+    observation space type
+    Params:
+    
+    ob_space: observation space (should be one of gym.spaces)
+    batch_size: batch size for input (default is None, so that resulting input placeholder can take tensors with any batch size)
+    name: tensorflow variable name for input placeholder
+
+    returns: tuple (input_placeholder, processed_input_tensor)
+    '''
+    if isinstance(ob_space, Discrete):
+        input_x  = tf.placeholder(shape=(batch_size,), dtype=tf.int32, name=name)
+        processed_x = tf.to_float(tf.one_hot(input_x, ob_space.n))
+        return input_x, processed_x
+
+    elif isinstance(ob_space, Box):
+        input_shape = (batch_size,) + ob_space.shape
+        input_x = tf.placeholder(shape=input_shape, dtype=ob_space.dtype, name=name)
+        processed_x = tf.to_float(input_x)
+        return input_x, processed_x
+
+    else:
+        raise NotImplementedError
+
+