Switch to side-by-side view

--- a
+++ b/submission/baselines/common/dataset.py
@@ -0,0 +1,60 @@
+import numpy as np
+
+class Dataset(object):
+    def __init__(self, data_map, deterministic=False, shuffle=True):
+        self.data_map = data_map
+        self.deterministic = deterministic
+        self.enable_shuffle = shuffle
+        self.n = next(iter(data_map.values())).shape[0]
+        self._next_id = 0
+        self.shuffle()
+
+    def shuffle(self):
+        if self.deterministic:
+            return
+        perm = np.arange(self.n)
+        np.random.shuffle(perm)
+
+        for key in self.data_map:
+            self.data_map[key] = self.data_map[key][perm]
+
+        self._next_id = 0
+
+    def next_batch(self, batch_size):
+        if self._next_id >= self.n and self.enable_shuffle:
+            self.shuffle()
+
+        cur_id = self._next_id
+        cur_batch_size = min(batch_size, self.n - self._next_id)
+        self._next_id += cur_batch_size
+
+        data_map = dict()
+        for key in self.data_map:
+            data_map[key] = self.data_map[key][cur_id:cur_id+cur_batch_size]
+        return data_map
+
+    def iterate_once(self, batch_size):
+        if self.enable_shuffle: self.shuffle()
+
+        while self._next_id <= self.n - batch_size:
+            yield self.next_batch(batch_size)
+        self._next_id = 0
+
+    def subset(self, num_elements, deterministic=True):
+        data_map = dict()
+        for key in self.data_map:
+            data_map[key] = self.data_map[key][:num_elements]
+        return Dataset(data_map, deterministic)
+
+
+def iterbatches(arrays, *, num_batches=None, batch_size=None, shuffle=True, include_final_partial_batch=True):
+    assert (num_batches is None) != (batch_size is None), 'Provide num_batches or batch_size, but not both'
+    arrays = tuple(map(np.asarray, arrays))
+    n = arrays[0].shape[0]
+    assert all(a.shape[0] == n for a in arrays[1:])
+    inds = np.arange(n)
+    if shuffle: np.random.shuffle(inds)
+    sections = np.arange(0, n, batch_size)[1:] if num_batches is None else num_batches
+    for batch_inds in np.array_split(inds, sections):
+        if include_final_partial_batch or len(batch_inds) == batch_size:
+            yield tuple(a[batch_inds] for a in arrays)