|
a |
|
b/submission/baselines/common/dataset.py |
|
|
1 |
import numpy as np |
|
|
2 |
|
|
|
3 |
class Dataset(object): |
|
|
4 |
def __init__(self, data_map, deterministic=False, shuffle=True): |
|
|
5 |
self.data_map = data_map |
|
|
6 |
self.deterministic = deterministic |
|
|
7 |
self.enable_shuffle = shuffle |
|
|
8 |
self.n = next(iter(data_map.values())).shape[0] |
|
|
9 |
self._next_id = 0 |
|
|
10 |
self.shuffle() |
|
|
11 |
|
|
|
12 |
def shuffle(self): |
|
|
13 |
if self.deterministic: |
|
|
14 |
return |
|
|
15 |
perm = np.arange(self.n) |
|
|
16 |
np.random.shuffle(perm) |
|
|
17 |
|
|
|
18 |
for key in self.data_map: |
|
|
19 |
self.data_map[key] = self.data_map[key][perm] |
|
|
20 |
|
|
|
21 |
self._next_id = 0 |
|
|
22 |
|
|
|
23 |
def next_batch(self, batch_size): |
|
|
24 |
if self._next_id >= self.n and self.enable_shuffle: |
|
|
25 |
self.shuffle() |
|
|
26 |
|
|
|
27 |
cur_id = self._next_id |
|
|
28 |
cur_batch_size = min(batch_size, self.n - self._next_id) |
|
|
29 |
self._next_id += cur_batch_size |
|
|
30 |
|
|
|
31 |
data_map = dict() |
|
|
32 |
for key in self.data_map: |
|
|
33 |
data_map[key] = self.data_map[key][cur_id:cur_id+cur_batch_size] |
|
|
34 |
return data_map |
|
|
35 |
|
|
|
36 |
def iterate_once(self, batch_size): |
|
|
37 |
if self.enable_shuffle: self.shuffle() |
|
|
38 |
|
|
|
39 |
while self._next_id <= self.n - batch_size: |
|
|
40 |
yield self.next_batch(batch_size) |
|
|
41 |
self._next_id = 0 |
|
|
42 |
|
|
|
43 |
def subset(self, num_elements, deterministic=True): |
|
|
44 |
data_map = dict() |
|
|
45 |
for key in self.data_map: |
|
|
46 |
data_map[key] = self.data_map[key][:num_elements] |
|
|
47 |
return Dataset(data_map, deterministic) |
|
|
48 |
|
|
|
49 |
|
|
|
50 |
def iterbatches(arrays, *, num_batches=None, batch_size=None, shuffle=True, include_final_partial_batch=True): |
|
|
51 |
assert (num_batches is None) != (batch_size is None), 'Provide num_batches or batch_size, but not both' |
|
|
52 |
arrays = tuple(map(np.asarray, arrays)) |
|
|
53 |
n = arrays[0].shape[0] |
|
|
54 |
assert all(a.shape[0] == n for a in arrays[1:]) |
|
|
55 |
inds = np.arange(n) |
|
|
56 |
if shuffle: np.random.shuffle(inds) |
|
|
57 |
sections = np.arange(0, n, batch_size)[1:] if num_batches is None else num_batches |
|
|
58 |
for batch_inds in np.array_split(inds, sections): |
|
|
59 |
if include_final_partial_batch or len(batch_inds) == batch_size: |
|
|
60 |
yield tuple(a[batch_inds] for a in arrays) |