def checkpoints_0(self):
state_desc = self.get_state_desc()
prev_state_desc = self.get_prev_state_desc()
if not prev_state_desc:
return 0
reward = 2
pelvis = state_desc["body_pos"]["pelvis"][1]
reward -= max(0, 0.70 - pelvis) * 20
penalty = 0
# Small penalty for too much activation (cost of transport)
penalty += np.sum(np.array(self.osim_model.get_activations()) ** 2) * 0.001
# Big penalty for not matching the vector on the X,Z projection.
# No penalty for the vertical axis
penalty += abs(state_desc["body_vel"]["pelvis"][0] - state_desc["target_vel"][0]) * 2
penalty += abs(state_desc["body_vel"]["pelvis"][2] - state_desc["target_vel"][2]) * 2
reward -= penalty
return reward * 0.5
# 接checkpoints_0
def checkpoints_1(self):
state_desc = self.get_state_desc()
prev_state_desc = self.get_prev_state_desc()
if not prev_state_desc:
return 0
reward = 2 + state_desc["body_vel"]["pelvis"][0]
pelvis = state_desc["body_pos"]["pelvis"][1]
reward -= max(0, 0.70 - pelvis) * 20
penalty = 0
# Small penalty for too much activation (cost of transport)
penalty += np.sum(np.array(self.osim_model.get_activations()) ** 2) * 0.001
# Big penalty for not matching the vector on the X,Z projection.
# No penalty for the vertical axis
penalty += abs(state_desc["body_vel"]["pelvis"][0] - state_desc["target_vel"][0]) * 2
penalty += abs(state_desc["body_vel"]["pelvis"][2] - state_desc["target_vel"][2]) * 2
reward -= penalty
return reward * 0.5
# 接checkpoints_1
def checkpoints_2(self):
state_desc = self.get_state_desc()
prev_state_desc = self.get_prev_state_desc()
if not prev_state_desc:
return 0
reward = 2
pelvis = state_desc["body_pos"]["pelvis"][1]
reward -= max(0, 0.70 - pelvis) * 20
penalty = 0
# Small penalty for too much activation (cost of transport)
penalty += np.sum(np.array(self.osim_model.get_activations()) ** 2) * 0.001
# Big penalty for not matching the vector on the X,Z projection.
# No penalty for the vertical axis
penalty += abs(state_desc["body_vel"]["pelvis"][0] - state_desc["target_vel"][0]) * 2
penalty += abs(state_desc["body_vel"]["pelvis"][2] - state_desc["target_vel"][2]) * 2
reward -= penalty
return reward * 0.5
# 接checkpoints_0
def checkpoints_3(self):
state_desc = self.get_state_desc()
prev_state_desc = self.get_prev_state_desc()
if not prev_state_desc:
return 0
reward = 3
pelvis = state_desc["body_pos"]["pelvis"][1]
reward -= max(0, 0.70 - pelvis) * 20
penalty = 0
# Small penalty for too much activation (cost of transport)
penalty += np.sum(np.array(self.osim_model.get_activations()) ** 2) * 0.001
# Big penalty for not matching the vector on the X,Z projection.
# No penalty for the vertical axis
penalty += abs(state_desc["body_vel"]["pelvis"][0] - state_desc["target_vel"][0]) * 2
penalty += abs(state_desc["body_vel"]["pelvis"][2] - state_desc["target_vel"][2]) * 2
reward -= penalty
return reward * 0.5
# 接checkpoints_3
def checkpoints_4(self):
state_desc = self.get_state_desc()
prev_state_desc = self.get_prev_state_desc()
if not prev_state_desc:
return 0
reward = 2
pelvis = state_desc["body_pos"]["pelvis"][1]
reward -= max(0, 0.70 - pelvis) * 20
penalty = 0
# Small penalty for too much activation (cost of transport)
penalty += np.sum(np.array(self.osim_model.get_activations()) ** 2) * 0.001
# Big penalty for not matching the vector on the X,Z projection.
# No penalty for the vertical axis
penalty += abs(state_desc["body_vel"]["pelvis"][0] - state_desc["target_vel"][0]) * 2
penalty += abs(state_desc["body_vel"]["pelvis"][2] - state_desc["target_vel"][2]) * 2
reward -= penalty
return reward * 0.5