[687a25]: / ADDPG / actor_network.py

Download this file

118 lines (94 with data), 4.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np
import math
from helper import *
# Hyper Parameters
LEARNING_RATE = 5e-5
TAU = 1e-4
class ActorNetwork:
"""docstring for ActorNetwork"""
def __init__(self,sess,state_dim,action_dim,scope):
self.state_dim = state_dim
self.action_dim = action_dim
with tf.variable_scope(scope):
self.phase = tf.placeholder("bool")
# create actor network
if scope == 'worker_1/actor':
self.state_input,self.action_output,self.net = self.create_network(state_dim,action_dim,self.phase,scope)
else: # for the rest workers & global, training phase == False
self.state_input,self.action_output,self.net = self.create_network(state_dim,action_dim,False,scope)
# create target actor network
if scope == 'worker_1/actor':
self.target_state_input,self.target_action_output,self.target_update,self.target_net = self.create_target_network(state_dim,action_dim,True,self.net,scope)
# define training rules
if scope == 'worker_1/actor':
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,scope)
with tf.control_dependencies(update_ops):
self.q_gradient_input = tf.placeholder("float",[None,self.action_dim])
self.parameters_gradients,self.global_norm = tf.clip_by_global_norm(tf.gradients(self.action_output,self.net,self.q_gradient_input),1.0)
self.optimizer = tf.train.AdamOptimizer(LEARNING_RATE).apply_gradients(zip(self.parameters_gradients,self.net))
sess.run(tf.global_variables_initializer())
#self.update_target()
#self.load_network()
def create_network(self,state_dim,action_dim,phase,scope):
with tf.variable_scope(scope):
state_input = tf.placeholder("float",[None,state_dim])
h1 = dense_relu_batch(state_input,128,phase)
h2 = dense_relu_batch(h1,128,phase)
action_output = dense(h2,action_dim,tf.tanh,tf.random_uniform_initializer(-3e-3,3e-3))
net = [v for v in tf.trainable_variables() if scope in v.name]
return state_input,action_output,net
def create_target_network(self,state_dim,action_dim,phase,net,scope):
state_input,action_output,target_net = self.create_network(state_dim,action_dim,phase,scope+'/target')
# updating target netowrk
target_update = []
ema = tf.train.ExponentialMovingAverage(decay=1-TAU)
target_update = ema.apply(net)
target_net = [ema.average(x) for x in net]
'''
for i in range(len(target_net)):
# theta' <-- tau*theta + (1-tau)*theta'
target_update.append(target_net[i].assign(tf.add(tf.multiply(TAU,net[i]),tf.multiply((1-TAU),target_net[i]))))
'''
return state_input,action_output,target_update,target_net
def update_target(self,sess):
sess.run(self.target_update)
def train(self,sess,q_gradient_batch,state_batch):
return sess.run([self.optimizer,self.global_norm],feed_dict={
self.q_gradient_input:q_gradient_batch,
self.state_input:state_batch,
self.target_state_input:state_batch,
self.phase:True
})
def actions(self,sess,state_batch):
return sess.run(self.action_output,feed_dict={
self.state_input:state_batch,
self.phase:True
})
def action(self,sess,state):
return sess.run(self.action_output,feed_dict={
self.state_input:[state],
self.phase:False
})[0]
def target_actions(self,sess,state_batch):
return sess.run(self.target_action_output,feed_dict={
self.target_state_input:state_batch,
self.phase:True
})
# f fan-in size
def variable(self,shape,f):
return tf.Variable(tf.random_uniform(shape,-1/math.sqrt(f),1/math.sqrt(f)))
'''
def load_network(self):
self.saver = tf.train.Saver()
checkpoint = tf.train.get_checkpoint_state("saved_actor_networks")
if checkpoint and checkpoint.model_checkpoint_path:
self.saver.restore(self.sess, checkpoint.model_checkpoint_path)
print "Successfully loaded:", checkpoint.model_checkpoint_path
else:
print "Could not find old network weights"
def save_network(self,time_step):
print 'save actor-network...',time_step
self.saver.save(self.sess, 'saved_actor_networks/' + 'actor-network', global_step = time_step)
'''