|
a |
|
b/rdpg/gym_rdpg.py |
|
|
1 |
from rdpg import * |
|
|
2 |
import opensim as osim |
|
|
3 |
from osim.http.client import Client |
|
|
4 |
from osim.env import * |
|
|
5 |
from history import History |
|
|
6 |
ENV_NAME = 'learning_to_run' |
|
|
7 |
PATH = 'models/' |
|
|
8 |
EPISODES = 100000 |
|
|
9 |
TEST = 5 |
|
|
10 |
|
|
|
11 |
def main(): |
|
|
12 |
env = RunEnv(visualize=False) |
|
|
13 |
env.reset(difficulty = 0) |
|
|
14 |
agent = RDPG(env) |
|
|
15 |
|
|
|
16 |
returns = [] |
|
|
17 |
rewards = [] |
|
|
18 |
|
|
|
19 |
for episode in xrange(EPISODES): |
|
|
20 |
state = env.reset(difficulty = 0) |
|
|
21 |
reward_episode = [] |
|
|
22 |
print "episode:",episode |
|
|
23 |
#Initializing empty history |
|
|
24 |
history = History(state) |
|
|
25 |
# Train |
|
|
26 |
for step in xrange(env.spec.timestep_limit): |
|
|
27 |
action = agent.noise_action(history) |
|
|
28 |
next_state,reward,done,_ = env.step(action) |
|
|
29 |
# appending to history |
|
|
30 |
history.append(next_state,action,reward) |
|
|
31 |
reward_episode.append(reward) |
|
|
32 |
if done: |
|
|
33 |
break |
|
|
34 |
# storing the history into replay buffer and if the number of histories sequence is above the threshod, start training |
|
|
35 |
agent.perceive(history) |
|
|
36 |
# Testing: |
|
|
37 |
#if episode % 1 == 0: |
|
|
38 |
# if episode % 1000 == 0 and episode > 50: |
|
|
39 |
# agent.save_model(PATH, episode) |
|
|
40 |
|
|
|
41 |
# total_return = 0 |
|
|
42 |
# ave_reward = 0 |
|
|
43 |
# for i in xrange(TEST): |
|
|
44 |
# state = env.reset() |
|
|
45 |
# reward_per_step = 0 |
|
|
46 |
# for j in xrange(env.spec.timestep_limit): |
|
|
47 |
# action = agent.action(state) # direct action for test |
|
|
48 |
# state,reward,done,_ = env.step(action) |
|
|
49 |
# total_return += reward |
|
|
50 |
# if done: |
|
|
51 |
# break |
|
|
52 |
# reward_per_step += (reward - reward_per_step)/(j+1) |
|
|
53 |
# ave_reward += reward_per_step |
|
|
54 |
|
|
|
55 |
# ave_return = total_return/TEST |
|
|
56 |
# ave_reward = ave_reward/TEST |
|
|
57 |
# returns.append(ave_return) |
|
|
58 |
# rewards.append(ave_reward) |
|
|
59 |
|
|
|
60 |
# print 'episode: ',episode,'Evaluation Average Return:',ave_return, ' Evaluation Average Reward: ', ave_reward |
|
|
61 |
|
|
|
62 |
if __name__ == '__main__': |
|
|
63 |
main() |