--- a +++ b/rdpg/actor_network.py @@ -0,0 +1,108 @@ +import tensorflow as tf +import numpy as np +import math +from tensorflow.contrib import rnn + +# Hyper Parameters +LSTM_HIDDEN_UNIT = 300 +LEARNING_RATE = 1e-4 +TAU = 0.001 +BATCH_SIZE = 64 + +class ActorNetwork: + """docstring for ActorNetwork""" + def __init__(self,sess,state_dim,action_dim): + + self.sess = sess + self.state_dim = state_dim + self.action_dim = action_dim + # create actor network + + self.state_input,self.action_output,self.net = self.create_network(state_dim,action_dim,"beh") + + # create target actor network + self.target_state_input,self.target_action_output,self.target_update,self.target_net = self.create_target_network(state_dim,action_dim,self.net) + + # define training rules + self.create_training_method() + + self.sess.run(tf.initialize_all_variables()) + + self.update_target() + #self.load_network() + + def create_training_method(self): + self.q_gradient_input = tf.placeholder("float",[None,self.action_dim]) + self.parameters_gradients = tf.gradients(self.action_output,self.net,-self.q_gradient_input) + self.optimizer = tf.train.AdamOptimizer(LEARNING_RATE).apply_gradients(zip(self.parameters_gradients,self.net)) + + def create_network(self,state_dim,action_dim,scope): + with tf.variable_scope(scope,reuse=False) as s: + + state_input = tf.placeholder("float",[None,None,state_dim]) + + # creating the recurrent part + lstm_cell=rnn.BasicLSTMCell(LSTM_HIDDEN_UNIT) + lstm_output,lstm_state=tf.nn.dynamic_rnn(cell=lstm_cell,inputs=state_input,dtype=tf.float32) + W3 = tf.Variable(tf.random_uniform([lstm_cell.state_size,action_dim],-3e-3,3e-3)) + b3 = tf.Variable(tf.random_uniform([action_dim],-3e-3,3e-3)) + + action_output = tf.tanh(tf.matmul(lstm_state,W3) + b3) + + net = [v for v in tf.trainable_variables() if scope in v.name] + + return state_input,action_output,net + + def create_target_network(self,state_dim,action_dim,net): + state_input,action_output,target_net = self.create_network(state_dim,action_dim,"tare") + # updating target netowrk + target_update = [] + for i in len(target_net): + # theta' <-- tau*theta + (1-tau)*theta' + target_update.append(target_net[i].assign(tf.add(tf.multiply(TAU,net[i]),tf.multiply((1-TAU),target[i])))) + return state_input,action_output,target_update,target_net + + def update_target(self): + self.sess.run(self.target_update) + + def train(self,q_gradient_batch,state_batch): + self.sess.run(self.optimizer,feed_dict={ + self.q_gradient_input:q_gradient_batch, + self.state_input:state_batch + }) + + def actions(self,state_batch): + return self.sess.run(self.action_output,feed_dict={ + self.state_input:state_batch + }) + + def action(self,state_batch): + return self.sess.run(self.action_output,feed_dict={ + self.state_input:state_batch + })[0] + + + def target_action(self,state_batch): + return self.sess.run(self.target_action_output,feed_dict={ + self.target_state_input:state_batch + }) + + # f fan-in size + def variable(self,shape,f): + return tf.Variable(tf.random_uniform(shape,-1/math.sqrt(f),1/math.sqrt(f))) +''' + def load_network(self): + self.saver = tf.train.Saver() + checkpoint = tf.train.get_checkpoint_state("saved_actor_networks") + if checkpoint and checkpoint.model_checkpoint_path: + self.saver.restore(self.sess, checkpoint.model_checkpoint_path) + print "Successfully loaded:", checkpoint.model_checkpoint_path + else: + print "Could not find old network weights" + def save_network(self,time_step): + print 'save actor-network...',time_step + self.saver.save(self.sess, 'saved_actor_networks/' + 'actor-network', global_step = time_step) + +''' + +