24 lines (24 with data), 4.7 kB
ó
ϸYc @ si d d l Z d d l Z d d l Z d d l m Z d Z d Z d Z d Z
d Z d d
d YZ d S( iÿÿÿÿN( t dlrelui i, g-Cëâ6
?gñhãµøä>i@ t ActorNetworkc B sh e Z d Z d Z d Z d Z d Z d Z d Z d Z d Z
d Z d
Z RS( s docstring for ActorNetworkc C s | | _ | | _ | | _ | j | | \ | _ | _ | _ | j | | | j \ | _ | _ | _
| _ | j | j j
t j | j d S( N( t sesst state_dimt
action_dimt create_networkt state_inputt
action_outputt nett create_target_networkt target_state_inputt target_action_outputt
target_updatet
target_nett create_training_methodt runt tft global_variables_initializert
update_target( t selfR R R ( ( sN /home/hangyu5/osim-rl/scripts/-NIPS-2017-Learning-to-Run/ddpg/actor_network.pyt __init__ s $0
c C sp t j d d | j g | _ t j | j | j | j | _ t j j
t j t
| j | j | _ d S( Nt float( R t placeholdert NoneR t q_gradient_inputt gradientsR R t parameters_gradientst traint
AdamOptimizert
LEARNING_RATEt apply_gradientst zipt optimizer( R ( ( sN /home/hangyu5/osim-rl/scripts/-NIPS-2017-Learning-to-Run/ddpg/actor_network.pyR # s !c C s6 t } t } t j d d | g } | j | | g | } | j | g | } | j | | g | } | j | g | } t j t j | | g d d }
t j t j | g d d } t t j | | | } t t j | | | }
t t j |
|
| } | | | | | | |
| g f S( NR gú~j¼th¿gú~j¼th?gü©ñÒMbP?g¹?(
t LAYER1_SIZEt LAYER2_SIZER R R t variablet Variablet random_uniformR t matmul( R R R t layer1_sizet layer2_sizeR t W1t b1t W2t b2t W3t b3t layer1t layer2R ( ( sN /home/hangyu5/osim-rl/scripts/-NIPS-2017-Learning-to-Run/ddpg/actor_network.pyR ( s $!c C sÞ t j d d | g } t j j d d t } | j | } g | D] } | j | ^ qG } t t j | | d | d } t t j | | d | d }
t t j |
| d | d } | | | | f S( NR t decayi i i i i i (
R R R R t ExponentialMovingAveraget TAUt applyt averageR R&