--- a
+++ b/ddpg/actor_network.py
@@ -0,0 +1,114 @@
+import tensorflow as tf
+import numpy as np
+import math
+from helper import dlrelu
+
+
+# Hyper Parameters
+LAYER1_SIZE = 400
+LAYER2_SIZE = 300
+LEARNING_RATE = 5e-5
+TAU = 1e-5
+BATCH_SIZE = 64
+
+class ActorNetwork:
+    """docstring for ActorNetwork"""
+    def __init__(self,sess,state_dim,action_dim):
+
+        self.sess = sess
+        self.state_dim = state_dim
+        self.action_dim = action_dim
+        # create actor network
+        self.state_input,self.action_output,self.net = self.create_network(state_dim,action_dim)
+
+        # create target actor network
+        self.target_state_input,self.target_action_output,self.target_update,self.target_net = self.create_target_network(state_dim,action_dim,self.net)
+
+        # define training rules
+        self.create_training_method()
+
+        self.sess.run(tf.global_variables_initializer())
+
+        self.update_target()
+        #self.load_network()
+
+    def create_training_method(self):
+        self.q_gradient_input = tf.placeholder("float",[None,self.action_dim])
+        self.parameters_gradients = tf.gradients(self.action_output,self.net,self.q_gradient_input)
+        self.optimizer = tf.train.AdamOptimizer(LEARNING_RATE).apply_gradients(zip(self.parameters_gradients,self.net))
+
+    def create_network(self,state_dim,action_dim):
+        layer1_size = LAYER1_SIZE
+        layer2_size = LAYER2_SIZE
+
+        state_input = tf.placeholder("float",[None,state_dim])
+
+        W1 = self.variable([state_dim,layer1_size],state_dim)
+        b1 = self.variable([layer1_size],state_dim)
+        W2 = self.variable([layer1_size,layer2_size],layer1_size)
+        b2 = self.variable([layer2_size],layer1_size)
+        W3 = tf.Variable(tf.random_uniform([layer2_size,action_dim],-3e-3,3e-3))
+        b3 = tf.Variable(tf.random_uniform([action_dim],1e-3,0.1))
+
+        layer1 = tf.tanh(tf.matmul(state_input,W1) + b1)
+        layer2 = tf.tanh(tf.matmul(layer1,W2) + b2)
+        action_output = tf.sigmoid(tf.matmul(layer2,W3) + b3)
+
+        return state_input,action_output,[W1,b1,W2,b2,W3,b3]
+
+    def create_target_network(self,state_dim,action_dim,net):
+        state_input = tf.placeholder("float",[None,state_dim])
+        ema = tf.train.ExponentialMovingAverage(decay=1-TAU)
+        target_update = ema.apply(net)
+        target_net = [ema.average(x) for x in net]
+
+        layer1 = tf.tanh(tf.matmul(state_input,target_net[0]) + target_net[1])
+        layer2 = tf.tanh(tf.matmul(layer1,target_net[2]) + target_net[3])
+        action_output = tf.sigmoid(tf.matmul(layer2,target_net[4]) + target_net[5])
+
+        return state_input,action_output,target_update,target_net
+
+    def update_target(self):
+        self.sess.run(self.target_update)
+
+    def train(self,q_gradient_batch,state_batch):
+        self.sess.run(self.optimizer,feed_dict={
+            self.q_gradient_input:q_gradient_batch,
+            self.state_input:state_batch
+            })
+
+    def actions(self,state_batch):
+        return self.sess.run(self.action_output,feed_dict={
+            self.state_input:state_batch
+            })
+
+    def action(self,state):
+        return self.sess.run(self.action_output,feed_dict={
+            self.state_input:[state]
+            })[0]
+
+
+    def target_actions(self,state_batch):
+        return self.sess.run(self.target_action_output,feed_dict={
+            self.target_state_input:state_batch
+            })
+
+    # f fan-in size
+    def variable(self,shape,f):
+        return tf.Variable(tf.random_uniform(shape,-1/math.sqrt(f),1/math.sqrt(f)))
+'''
+    def load_network(self):
+        self.saver = tf.train.Saver()
+        checkpoint = tf.train.get_checkpoint_state("saved_actor_networks")
+        if checkpoint and checkpoint.model_checkpoint_path:
+            self.saver.restore(self.sess, checkpoint.model_checkpoint_path)
+            print "Successfully loaded:", checkpoint.model_checkpoint_path
+        else:
+            print "Could not find old network weights"
+    def save_network(self,time_step):
+        print 'save actor-network...',time_step
+        self.saver.save(self.sess, 'saved_actor_networks/' + 'actor-network', global_step = time_step)
+
+'''
+
+