|
a |
|
b/ADDPG/ou_noise.py |
|
|
1 |
# -------------------------------------- |
|
|
2 |
# Ornstein-Uhlenbeck Noise |
|
|
3 |
# Author: Flood Sung |
|
|
4 |
# Date: 2016.5.4 |
|
|
5 |
# Reference: https://github.com/rllab/rllab/blob/master/rllab/exploration_strategies/ou_strategy.py |
|
|
6 |
# -------------------------------------- |
|
|
7 |
|
|
|
8 |
import numpy as np |
|
|
9 |
import numpy.random as nr |
|
|
10 |
|
|
|
11 |
test = np.ones(18)*0.05 |
|
|
12 |
test[2] = 0.5 |
|
|
13 |
test[3] = 0.5 |
|
|
14 |
test[9] = 0.5 |
|
|
15 |
test[12] = 0.5 |
|
|
16 |
test[13] = 0.5 |
|
|
17 |
|
|
|
18 |
class OUNoise: |
|
|
19 |
"""docstring for OUNoise""" |
|
|
20 |
def __init__(self,action_dimension,mu=0.0, theta=0.1, sigma=0.2): |
|
|
21 |
self.action_dimension = action_dimension |
|
|
22 |
self.mu = test |
|
|
23 |
self.theta = theta |
|
|
24 |
self.sigma = sigma |
|
|
25 |
self.state = self.mu |
|
|
26 |
self.reset(None) |
|
|
27 |
|
|
|
28 |
def reset(self,settings): |
|
|
29 |
if isinstance(settings,(list,np.ndarray)): |
|
|
30 |
self.mu = settings[0] |
|
|
31 |
self.theta = settings[1] |
|
|
32 |
self.state = np.ones(self.action_dimension) * self.mu |
|
|
33 |
else: |
|
|
34 |
#self.state = np.ones(self.action_dimension) * self.mu |
|
|
35 |
self.state = test |
|
|
36 |
|
|
|
37 |
def noise(self): |
|
|
38 |
x = self.state |
|
|
39 |
dx = self.theta * (self.mu - x) + self.sigma * nr.randn(len(x)) |
|
|
40 |
self.state = x + dx |
|
|
41 |
return self.state |
|
|
42 |
|
|
|
43 |
if __name__ == '__main__': |
|
|
44 |
ou = OUNoise(5) |
|
|
45 |
states = [] |
|
|
46 |
for i in range(200): |
|
|
47 |
states.append([i for i in ou.noise()]) |
|
|
48 |
import matplotlib.pyplot as plt |
|
|
49 |
|
|
|
50 |
plt.plot(states) |
|
|
51 |
plt.show() |