|
a |
|
b/ADDPG/model.py |
|
|
1 |
# ----------------------------------- |
|
|
2 |
# Deep Deterministic Policy Gradient |
|
|
3 |
# Author: Kaizhao Liang, Hang Yu |
|
|
4 |
# Date: 08.21.2017 |
|
|
5 |
# ----------------------------------- |
|
|
6 |
import tensorflow as tf |
|
|
7 |
import numpy as np |
|
|
8 |
from ou_noise import OUNoise |
|
|
9 |
from critic_network import CriticNetwork |
|
|
10 |
from actor_network import ActorNetwork |
|
|
11 |
from replay_buffer import ReplayBuffer |
|
|
12 |
from helper import * |
|
|
13 |
from time import gmtime, strftime, sleep |
|
|
14 |
|
|
|
15 |
import opensim as osim |
|
|
16 |
from osim.http.client import Client |
|
|
17 |
from osim.env import * |
|
|
18 |
|
|
|
19 |
import multiprocessing |
|
|
20 |
from multiprocessing import Process, Pipe |
|
|
21 |
|
|
|
22 |
# [Hacked] the memory might always be leaking, here's a solution #58 |
|
|
23 |
# https://github.com/stanfordnmbl/osim-rl/issues/58 |
|
|
24 |
# separate process that holds a separate RunEnv instance. |
|
|
25 |
# This has to be done since RunEnv() in the same process result in interleaved running of simulations. |
|
|
26 |
def standalone_headless_isolated(conn,vis): |
|
|
27 |
e = RunEnv(visualize=vis) |
|
|
28 |
while True: |
|
|
29 |
try: |
|
|
30 |
msg = conn.recv() |
|
|
31 |
|
|
|
32 |
# messages should be tuples, |
|
|
33 |
# msg[0] should be string |
|
|
34 |
|
|
|
35 |
if msg[0] == 'reset': |
|
|
36 |
o = e.reset(difficulty=2) |
|
|
37 |
conn.send(o) |
|
|
38 |
elif msg[0] == 'step': |
|
|
39 |
ordi = e.step(msg[1]) |
|
|
40 |
conn.send(ordi) |
|
|
41 |
else: |
|
|
42 |
conn.close() |
|
|
43 |
del e |
|
|
44 |
return |
|
|
45 |
except: |
|
|
46 |
conn.close() |
|
|
47 |
del e |
|
|
48 |
raise |
|
|
49 |
|
|
|
50 |
# class that manages the interprocess communication and expose itself as a RunEnv. |
|
|
51 |
class ei: # Environment Instance |
|
|
52 |
def __init__(self,vis): |
|
|
53 |
self.pc, self.cc = Pipe() |
|
|
54 |
self.p = Process( |
|
|
55 |
target = standalone_headless_isolated, |
|
|
56 |
args=(self.cc,vis,) |
|
|
57 |
) |
|
|
58 |
self.p.daemon = True |
|
|
59 |
self.p.start() |
|
|
60 |
|
|
|
61 |
def reset(self): |
|
|
62 |
self.pc.send(('reset',)) |
|
|
63 |
return self.pc.recv() |
|
|
64 |
|
|
|
65 |
def step(self,actions): |
|
|
66 |
self.pc.send(('step',actions,)) |
|
|
67 |
try: |
|
|
68 |
return self.pc.recv() |
|
|
69 |
except : |
|
|
70 |
print('Error in recv()') |
|
|
71 |
raise |
|
|
72 |
|
|
|
73 |
def __del__(self): |
|
|
74 |
self.pc.send(('exit',)) |
|
|
75 |
#print('(ei)waiting for join...') |
|
|
76 |
self.p.join() |
|
|
77 |
try: |
|
|
78 |
del self.pc |
|
|
79 |
del self.cc |
|
|
80 |
del self.p |
|
|
81 |
except: |
|
|
82 |
raise |
|
|
83 |
|
|
|
84 |
############################################### |
|
|
85 |
# DDPG Worker |
|
|
86 |
############################################### |
|
|
87 |
pause_perceive = False |
|
|
88 |
replay_buffer = ReplayBuffer(1e6) |
|
|
89 |
|
|
|
90 |
class Worker: |
|
|
91 |
"""docstring for DDPG""" |
|
|
92 |
def __init__(self,sess,number,model_path,global_episodes,explore,training,vis,batch_size,gamma,n_step,global_actor_net): |
|
|
93 |
self.name = 'worker_' + str(number) # name for uploading results |
|
|
94 |
self.number = number |
|
|
95 |
# Randomly initialize actor network and critic network |
|
|
96 |
# with both their target networks |
|
|
97 |
self.state_dim = 41+3+14 # 41 observations plus 17 induced velocity |
|
|
98 |
self.action_dim = 18 |
|
|
99 |
self.model_path= model_path |
|
|
100 |
self.global_episodes = global_episodes |
|
|
101 |
self.increment = self.global_episodes.assign_add(1) |
|
|
102 |
self.sess = sess |
|
|
103 |
self.explore = explore |
|
|
104 |
self.noise_decay = 1. |
|
|
105 |
self.training = training |
|
|
106 |
self.vis = vis # == True only during testing |
|
|
107 |
self.total_steps = 0 # for ReplayBuffer to count |
|
|
108 |
self.batch_size = batch_size |
|
|
109 |
self.gamma = gamma |
|
|
110 |
self.n_step = n_step |
|
|
111 |
# Initialize a random process the Ornstein-Uhlenbeck process for action exploration |
|
|
112 |
self.exploration_noise = OUNoise(self.action_dim) |
|
|
113 |
|
|
|
114 |
self.actor_network = ActorNetwork(self.sess,self.state_dim,self.action_dim,self.name+'/actor') |
|
|
115 |
self.update_local_actor = update_graph(global_actor_net,self.actor_network.net) |
|
|
116 |
if self.name == 'worker_1': |
|
|
117 |
self.critic_network = CriticNetwork(self.sess,self.state_dim,self.action_dim,self.name+'/critic') |
|
|
118 |
self.actor_network.update_target(sess) |
|
|
119 |
self.critic_network.update_target(sess) |
|
|
120 |
self.update_global_actor = update_graph(self.actor_network.net,global_actor_net) |
|
|
121 |
|
|
|
122 |
def start(self): |
|
|
123 |
self.env = ei(vis=self.vis)#RunEnv(visualize=True) |
|
|
124 |
|
|
|
125 |
def restart(self): # restart env every ? eps to coutner memory leak |
|
|
126 |
if self.env != None: |
|
|
127 |
del self.env |
|
|
128 |
sleep(0.001) |
|
|
129 |
self.env = ei(vis=self.vis) |
|
|
130 |
|
|
|
131 |
def train(self): |
|
|
132 |
# print "train step",self.time_step |
|
|
133 |
# Sample a random minibatch of N transitions from replay buffer |
|
|
134 |
global replay_buffer |
|
|
135 |
minibatch = replay_buffer.get_batch(self.batch_size) |
|
|
136 |
|
|
|
137 |
BATCH_SIZE = self.batch_size |
|
|
138 |
#print(self.batch_size) |
|
|
139 |
state_batch = np.asarray([data[0] for data in minibatch]) |
|
|
140 |
|
|
|
141 |
action_batch = np.asarray([data[1] for data in minibatch]) |
|
|
142 |
reward_batch = np.asarray([data[2] for data in minibatch]) |
|
|
143 |
|
|
|
144 |
next_state_batch = np.asarray([data[3] for data in minibatch]) |
|
|
145 |
done_batch = np.asarray([data[4] for data in minibatch]) |
|
|
146 |
|
|
|
147 |
# for action_dim = 1 |
|
|
148 |
action_batch = np.resize(action_batch,[BATCH_SIZE,self.action_dim]) |
|
|
149 |
|
|
|
150 |
# Calculate y_batch |
|
|
151 |
next_action_batch = self.actor_network.target_actions(self.sess,next_state_batch) |
|
|
152 |
q_value_batch = self.critic_network.target_q(self.sess,next_state_batch,next_action_batch) |
|
|
153 |
|
|
|
154 |
done_mask = np.asarray([0. if done else 1. for done in done_batch]) |
|
|
155 |
y_batch = reward_batch + self.gamma**self.n_step * q_value_batch * done_mask |
|
|
156 |
y_batch = np.resize(y_batch,[BATCH_SIZE,1]) |
|
|
157 |
# Update critic by minimizing the loss L |
|
|
158 |
_,loss,a,b,norm = self.critic_network.train(self.sess,y_batch,state_batch,action_batch) |
|
|
159 |
#print(a) |
|
|
160 |
#print(b) |
|
|
161 |
#print(loss) |
|
|
162 |
#print(norm) |
|
|
163 |
|
|
|
164 |
# Update the actor policy using the sampled gradient: |
|
|
165 |
action_batch_for_gradients = self.actor_network.actions(self.sess,state_batch) |
|
|
166 |
q_gradient_batch = self.critic_network.gradients(self.sess,state_batch,action_batch_for_gradients) |
|
|
167 |
q_gradient_batch *= -1. |
|
|
168 |
''' |
|
|
169 |
# invert gradient formula : dq = (a_max-a) / (a_max - a_min) if dq>0, else dq = (a - a_min) / (a_max - a_min) |
|
|
170 |
for i in range(BATCH_SIZE): # In our case a_max = 1, a_min = 0 |
|
|
171 |
for j in range(18): |
|
|
172 |
dq = q_gradient_batch[i,j] |
|
|
173 |
a = action_batch_for_gradients[i,j] |
|
|
174 |
if dq > 0.: |
|
|
175 |
q_gradient_batch[i,j] *= (0.95-a) |
|
|
176 |
else: |
|
|
177 |
q_gradient_batch[i,j] *= a-0.05''' |
|
|
178 |
|
|
|
179 |
_,norm = self.actor_network.train(self.sess,q_gradient_batch,state_batch) |
|
|
180 |
#print(norm) |
|
|
181 |
# Update the networks |
|
|
182 |
self.actor_network.update_target(self.sess) |
|
|
183 |
self.critic_network.update_target(self.sess) |
|
|
184 |
self.sess.run(self.update_global_actor) |
|
|
185 |
|
|
|
186 |
|
|
|
187 |
def save_model(self, saver, episode): |
|
|
188 |
saver.save(self.sess, self.model_path + "/model-" + str(episode) + ".ckpt") |
|
|
189 |
|
|
|
190 |
def noise_action(self,state): |
|
|
191 |
action = self.actor_network.action(self.sess,state) |
|
|
192 |
return np.clip(action,0.05,0.95)+self.exploration_noise.noise()*self.noise_decay |
|
|
193 |
|
|
|
194 |
def action(self,state): |
|
|
195 |
action = self.actor_network.action(self.sess,state) |
|
|
196 |
return action |
|
|
197 |
|
|
|
198 |
def perceive(self,transition): |
|
|
199 |
# Store transition (s_t,a_t,r_t,s_{t+1}) in replay buffer |
|
|
200 |
global replay_buffer |
|
|
201 |
replay_buffer.add(transition) |
|
|
202 |
|
|
|
203 |
def work(self,coord,saver): |
|
|
204 |
global replay_buffer |
|
|
205 |
global pause_perceive |
|
|
206 |
|
|
|
207 |
if self.training: |
|
|
208 |
episode_count = self.sess.run(self.global_episodes) |
|
|
209 |
else: |
|
|
210 |
episode_count = 0 |
|
|
211 |
wining_episode_count = 0 |
|
|
212 |
|
|
|
213 |
print ("Starting worker_" + str(self.number)) |
|
|
214 |
|
|
|
215 |
if self.name == 'worker_0': |
|
|
216 |
with open('result.txt','w') as f: |
|
|
217 |
f.write(strftime("Starting time: %a, %d %b %Y %H:%M:%S\n", gmtime())) |
|
|
218 |
|
|
|
219 |
self.start() # change Aug24 start the env |
|
|
220 |
|
|
|
221 |
with self.sess.as_default(), self.sess.graph.as_default(): |
|
|
222 |
#not_start_training_yet = True |
|
|
223 |
while not coord.should_stop(): |
|
|
224 |
|
|
|
225 |
returns = [] |
|
|
226 |
episode_buffer = [] |
|
|
227 |
episode_reward = 0 |
|
|
228 |
self.noise_decay -= 1./self.explore#np.maximum(abs(np.cos(self.explore / 20 * np.pi)),0.67) |
|
|
229 |
self.explore -= 1 |
|
|
230 |
start_training = episode_count > 50 #replay_buffer.count() >= 500e3 # start_training |
|
|
231 |
erase_buffer = False # erase buffer |
|
|
232 |
|
|
|
233 |
if self.name != "worker_1": |
|
|
234 |
self.sess.run(self.update_local_actor) |
|
|
235 |
|
|
|
236 |
state = self.env.reset() |
|
|
237 |
seed= 0.1 |
|
|
238 |
ea=engineered_action(seed) |
|
|
239 |
|
|
|
240 |
s,s1,s2 = [],[],[] |
|
|
241 |
ob = self.env.step(ea)[0] |
|
|
242 |
s = ob |
|
|
243 |
ob = self.env.step(ea)[0] |
|
|
244 |
s1 = ob |
|
|
245 |
s = process_state(s,s1) |
|
|
246 |
|
|
|
247 |
if self.name == 'worker_0': |
|
|
248 |
print("episode:{}".format(str(episode_count)+' '+self.name)) |
|
|
249 |
# Train |
|
|
250 |
action = ea |
|
|
251 |
demo = int(50*self.noise_decay) |
|
|
252 |
for step in xrange(1000): |
|
|
253 |
if self.name == "worker_1" and start_training and self.training: |
|
|
254 |
#pause_perceive=True |
|
|
255 |
#print(self.name+'is training') |
|
|
256 |
#self.train() |
|
|
257 |
self.train() |
|
|
258 |
#pause_perceive=False |
|
|
259 |
if erase_buffer: |
|
|
260 |
pause_perceive = True |
|
|
261 |
replay_buffer.erase() # erase old experience every time the model is saved |
|
|
262 |
pause_perceive = False |
|
|
263 |
break |
|
|
264 |
if demo > 0: |
|
|
265 |
action = ea |
|
|
266 |
demo -=1 |
|
|
267 |
elif self.explore>0 and self.training: |
|
|
268 |
action = np.clip(self.noise_action(s),0.05,0.95) # change Aug20 |
|
|
269 |
else: |
|
|
270 |
action = np.clip(self.action(s),0.05,0.95) |
|
|
271 |
|
|
|
272 |
try: |
|
|
273 |
s2,reward,done,_ = self.env.step(action) |
|
|
274 |
except: |
|
|
275 |
print('Env error. Shutdown {}'.format(self.name)) |
|
|
276 |
if self.env != None: |
|
|
277 |
del self.env |
|
|
278 |
return 0 |
|
|
279 |
|
|
|
280 |
s1 = process_state(s1,s2) |
|
|
281 |
#print(s1) |
|
|
282 |
if s1[2] > 0.75: |
|
|
283 |
height_reward = 0. |
|
|
284 |
else: |
|
|
285 |
height_reward = -0.05 |
|
|
286 |
if not done: |
|
|
287 |
ep_reward = 1.005 |
|
|
288 |
else: |
|
|
289 |
ep_reward = 0.0 |
|
|
290 |
d_head_pelvis = abs(s1[22]-s[1]) |
|
|
291 |
#print(d_head_pelvis) |
|
|
292 |
if d_head_pelvis > 0.25: |
|
|
293 |
sta_reward = -0.05 |
|
|
294 |
else: |
|
|
295 |
sta_reward = 0. |
|
|
296 |
#print((s1[4]+height_reward+sta_reward)*ep_reward) |
|
|
297 |
episode_buffer.append([s,action,(s1[4]+height_reward+sta_reward)*ep_reward,s1,done]) |
|
|
298 |
if step > self.n_step and not pause_perceive: |
|
|
299 |
transition = n_step_transition(episode_buffer,self.n_step,self.gamma) |
|
|
300 |
self.perceive(transition) |
|
|
301 |
|
|
|
302 |
s = s1 |
|
|
303 |
s1 = s2 |
|
|
304 |
episode_reward += reward |
|
|
305 |
if done: |
|
|
306 |
self.exploration_noise.reset(None) |
|
|
307 |
break |
|
|
308 |
|
|
|
309 |
if self.name == 'worker_0' and episode_count % 5 == 0: |
|
|
310 |
with open('result.txt','a') as f: |
|
|
311 |
f.write("Episode "+str(episode_count)+" reward (training): %.2f\n" % episode_reward) |
|
|
312 |
|
|
|
313 |
# Testing: |
|
|
314 |
if self.name == 'worker_2' and episode_count % 10 == 0 and episode_count > 1: # change Aug19 |
|
|
315 |
if episode_count % 25 == 0 and not self.vis: |
|
|
316 |
self.save_model(saver, episode_count) |
|
|
317 |
|
|
|
318 |
total_return = 0 |
|
|
319 |
TEST = 1 |
|
|
320 |
for i in xrange(TEST): |
|
|
321 |
state = self.env.reset() |
|
|
322 |
a=engineered_action(seed) |
|
|
323 |
ob = self.env.step(a)[0] |
|
|
324 |
s = ob |
|
|
325 |
ob = self.env.step(a)[0] |
|
|
326 |
s1 = ob |
|
|
327 |
s = process_state(s,s1) |
|
|
328 |
for j in xrange(1000): |
|
|
329 |
action = self.action(s) # direct action for test |
|
|
330 |
s2,reward,done,_ = self.env.step(action) |
|
|
331 |
s1 = process_state(s1,s2) |
|
|
332 |
s = s1 |
|
|
333 |
s1 = s2 |
|
|
334 |
total_return += reward |
|
|
335 |
if done: |
|
|
336 |
break |
|
|
337 |
|
|
|
338 |
ave_return = total_return/TEST |
|
|
339 |
returns.append(ave_return) |
|
|
340 |
with open('result.txt','a') as f: |
|
|
341 |
f.write('episode: {} Evaluation(testing) Average Return: {}\n'.format(episode_count,ave_return)) |
|
|
342 |
|
|
|
343 |
if self.name == 'worker_0' and self.training: |
|
|
344 |
self.sess.run(self.increment) |
|
|
345 |
episode_count += 1 |
|
|
346 |
if episode_count == 100: |
|
|
347 |
del self.env |
|
|
348 |
# All done Stop trail |
|
|
349 |
# Confirm exit |
|
|
350 |
print('Done '+self.name) |
|
|
351 |
return |
|
|
352 |
# All done Stop trail |
|
|
353 |
# Confirm exit |
|
|
354 |
print('Done '+self.name) |
|
|
355 |
return |
|
|
356 |
|
|
|
357 |
|
|
|
358 |
|
|
|
359 |
|
|
|
360 |
|
|
|
361 |
|
|
|
362 |
|
|
|
363 |
|