--- a +++ b/ADDPG/critic_network.py @@ -0,0 +1,117 @@ +import tensorflow as tf +import tensorflow.contrib.slim as slim +import numpy as np +import math +from helper import * + + +LEARNING_RATE = 1e-4 +TAU = 1e-4 +L2 = 0.01 + +class CriticNetwork: + """docstring for CriticNetwork""" + def __init__(self,sess,state_dim,action_dim,scope): + self.time_step = 0 + # create q network + self.state_input,\ + self.action_input,\ + self.q_value_output,\ + self.net = self.create_q_network(state_dim,action_dim,True,scope) + + # create target q network (the same structure with q network) + if scope == 'worker_1/critic': + self.target_state_input,self.target_action_input,self.target_q_value_output,self.target_update = self.create_target_q_network(state_dim,action_dim,True,self.net,scope) + + if scope == 'worker_1/critic': + update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,scope) + with tf.control_dependencies(update_ops): + self.y_input = tf.placeholder("float",[None,1]) + weight_decay = tf.add_n([L2 * tf.nn.l2_loss(var) for var in self.net]) + + self.cost = tf.reduce_mean(tf.square(self.y_input - self.q_value_output)) + weight_decay + self.optimizer = tf.train.AdamOptimizer(LEARNING_RATE) + self.parameters_gradients,_ = zip(*self.optimizer.compute_gradients(self.cost,self.net)) + self.parameters_graidents,self.global_norm = tf.clip_by_global_norm(self.parameters_gradients,1.0) + self.optimizer = self.optimizer.apply_gradients(zip(self.parameters_gradients,self.net)) + self.action_gradients = tf.gradients(self.q_value_output,self.action_input) + + sess.run(tf.global_variables_initializer()) + + def create_q_network(self,state_dim,action_dim,phase,scope): + with tf.variable_scope(scope): + + state_input = tf.placeholder("float",[None,state_dim]) + action_input = tf.placeholder("float",[None,action_dim]) + + h1 = dense_relu_batch(state_input,128,phase) + h1_a = dense_relu_batch(action_input,128,phase) + h2 = dense(tf.add(h1,h1_a),128,tf.nn.relu,tf.contrib.layers.xavier_initializer()) + q_value_output = dense(h2,1,None,tf.random_uniform_initializer(-3e-3,3e-3)) + net = [v for v in tf.trainable_variables() if scope in v.name] + + return state_input,action_input,q_value_output,net + + def create_target_q_network(self,state_dim,action_dim,phase,net,scope): + state_input,action_input,q_value_output,target_net = self.create_q_network(state_dim,action_dim,phase,scope+'/target') + target_update = [] + ema = tf.train.ExponentialMovingAverage(decay=1-TAU) + target_update = ema.apply(net) + target_net = [ema.average(x) for x in net] + ''' + for i in range(len(target_net)): + # theta' <-- tau*theta + (1-tau)*theta' + target_update.append(target_net[i].assign(tf.add(tf.multiply(TAU,net[i]),tf.multiply((1-TAU),target_net[i])))) + ''' + return state_input,action_input,q_value_output,target_update + + def update_target(self,sess): + sess.run(self.target_update) + + def train(self,sess,y_batch,state_batch,action_batch): + self.time_step += 1 + return sess.run([self.optimizer,self.cost,self.y_input,self.q_value_output,self.global_norm],feed_dict={ + self.y_input:y_batch, + self.state_input:state_batch, + self.action_input:action_batch, + self.target_state_input:state_batch, + self.target_action_input:action_batch + }) + + def gradients(self,sess,state_batch,action_batch): + return sess.run(self.action_gradients,feed_dict={ + self.state_input:state_batch, + self.action_input:action_batch, + self.target_state_input:state_batch, + self.target_action_input:action_batch + })[0] + + def target_q(self,sess,state_batch,action_batch): + return sess.run(self.target_q_value_output,feed_dict={ + self.target_state_input:state_batch, + self.target_action_input:action_batch + }) + + def q_value(self,sess,state_batch,action_batch): + return sess.run(self.q_value_output,feed_dict={ + self.state_input:state_batch, + self.action_input:action_batch + }) + + # f fan-in size + def variable(self,shape,f): + return tf.Variable(tf.random_uniform(shape,-1/math.sqrt(f),1/math.sqrt(f))) +''' + def load_network(self): + self.saver = tf.train.Saver() + checkpoint = tf.train.get_checkpoint_state("saved_critic_networks") + if checkpoint and checkpoint.model_checkpoint_path: + self.saver.restore(self.sess, checkpoint.model_checkpoint_path) + print "Successfully loaded:", checkpoint.model_checkpoint_path + else: + print "Could not find old network weights" + + def save_network(self,time_step): + print 'save critic-network...',time_step + self.saver.save(self.sess, 'saved_critic_networks/' + 'critic-network', global_step = time_step) +'''