--- a
+++ b/ADDPG/actor_network.py
@@ -0,0 +1,117 @@
+import tensorflow as tf
+import tensorflow.contrib.slim as slim
+import numpy as np
+import math
+from helper import *
+
+
+# Hyper Parameters
+LEARNING_RATE = 5e-5
+TAU = 1e-4
+
+class ActorNetwork:
+    """docstring for ActorNetwork"""
+    def __init__(self,sess,state_dim,action_dim,scope):
+
+        self.state_dim = state_dim
+        self.action_dim = action_dim
+        
+        with tf.variable_scope(scope):
+            self.phase = tf.placeholder("bool")
+
+        # create actor network
+        if scope == 'worker_1/actor':
+            self.state_input,self.action_output,self.net = self.create_network(state_dim,action_dim,self.phase,scope)
+        else: # for the rest workers & global, training phase == False
+            self.state_input,self.action_output,self.net = self.create_network(state_dim,action_dim,False,scope)           
+
+        # create target actor network
+        if scope == 'worker_1/actor':
+            self.target_state_input,self.target_action_output,self.target_update,self.target_net = self.create_target_network(state_dim,action_dim,True,self.net,scope)
+        # define training rules
+        if scope == 'worker_1/actor':
+	    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,scope)
+    	    with tf.control_dependencies(update_ops):
+	        self.q_gradient_input = tf.placeholder("float",[None,self.action_dim])
+	        self.parameters_gradients,self.global_norm = tf.clip_by_global_norm(tf.gradients(self.action_output,self.net,self.q_gradient_input),1.0)
+		self.optimizer = tf.train.AdamOptimizer(LEARNING_RATE).apply_gradients(zip(self.parameters_gradients,self.net))
+	sess.run(tf.global_variables_initializer())
+
+        #self.update_target()
+        #self.load_network()
+
+
+    def create_network(self,state_dim,action_dim,phase,scope):
+        with tf.variable_scope(scope):
+
+           state_input = tf.placeholder("float",[None,state_dim])
+	   h1 = dense_relu_batch(state_input,128,phase)
+	   h2 = dense_relu_batch(h1,128,phase)
+	   action_output = dense(h2,action_dim,tf.tanh,tf.random_uniform_initializer(-3e-3,3e-3))
+           net = [v for v in tf.trainable_variables() if scope in v.name]
+
+           return state_input,action_output,net
+
+    def create_target_network(self,state_dim,action_dim,phase,net,scope):
+        state_input,action_output,target_net = self.create_network(state_dim,action_dim,phase,scope+'/target')
+        # updating target netowrk
+        target_update = []
+        ema = tf.train.ExponentialMovingAverage(decay=1-TAU)
+        target_update = ema.apply(net)
+        target_net = [ema.average(x) for x in net]
+        '''
+        for i in range(len(target_net)):
+            # theta' <-- tau*theta + (1-tau)*theta'
+            target_update.append(target_net[i].assign(tf.add(tf.multiply(TAU,net[i]),tf.multiply((1-TAU),target_net[i]))))
+            '''
+        return state_input,action_output,target_update,target_net
+
+    def update_target(self,sess):
+        sess.run(self.target_update)
+
+    def train(self,sess,q_gradient_batch,state_batch):
+        return sess.run([self.optimizer,self.global_norm],feed_dict={
+            self.q_gradient_input:q_gradient_batch,
+            self.state_input:state_batch,
+            self.target_state_input:state_batch,
+	    self.phase:True
+            })
+
+    def actions(self,sess,state_batch):
+        return sess.run(self.action_output,feed_dict={
+            self.state_input:state_batch,
+	    self.phase:True
+            })
+
+    def action(self,sess,state):
+        return sess.run(self.action_output,feed_dict={
+            self.state_input:[state],
+	    self.phase:False
+            })[0]
+
+
+    def target_actions(self,sess,state_batch):
+        return sess.run(self.target_action_output,feed_dict={
+            self.target_state_input:state_batch,
+            self.phase:True
+            })
+
+    # f fan-in size
+    def variable(self,shape,f):
+        return tf.Variable(tf.random_uniform(shape,-1/math.sqrt(f),1/math.sqrt(f)))
+'''
+    def load_network(self):
+        self.saver = tf.train.Saver()
+        checkpoint = tf.train.get_checkpoint_state("saved_actor_networks")
+        if checkpoint and checkpoint.model_checkpoint_path:
+            self.saver.restore(self.sess, checkpoint.model_checkpoint_path)
+            print "Successfully loaded:", checkpoint.model_checkpoint_path
+        else:
+            print "Could not find old network weights"
+    def save_network(self,time_step):
+        print 'save actor-network...',time_step
+        self.saver.save(self.sess, 'saved_actor_networks/' + 'actor-network', global_step = time_step)
+
+'''
+
+