--- a +++ b/A3C/test.py @@ -0,0 +1,14 @@ +import tensorflow as tf +import numpy as np + +x = tf.placeholder(tf.float32, [batch_size, 10, 16]) + +with tf.Session() as sess: + mu = tf.placeholder(shape=[3],dtype=tf.float32) + var = tf.placeholder(shape=[3],dtype=tf.float32) + normal = tf.distributions.Normal(mu,tf.sqrt(var)) + act = tf.placeholder(shape=[3],dtype=tf.float32) + log_prob = normal.log_prob(act) + entropy = normal.entropy() + feed_dict={mu:np.zeros(3),var:np.ones(3)*20,act:np.array([0,-0.5,1])} + print sess.run([log_prob,entropy],feed_dict=feed_dict)