[687a25]: / A3C / model (lstm).py

Download this file

455 lines (401 with data), 21.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
from ou_noise import OUNoise
from helper import *
import opensim as osim
from osim.http.client import Client
from osim.env import *
import threading
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
from helper import *
from time import sleep
from time import time
from time import gmtime, strftime
import multiprocessing
from multiprocessing import Process, Pipe
from osim.env import *
# [Hacked] the memory might always be leaking, here's a solution #58
# https://github.com/stanfordnmbl/osim-rl/issues/58
# separate process that holds a separate RunEnv instance.
# This has to be done since RunEnv() in the same process result in interleaved running of simulations.
def floatify(np):
return [float(np[i]) for i in range(len(np))]
def standalone_headless_isolated(conn,vis):
e = RunEnv(visualize=vis)
while True:
try:
msg = conn.recv()
# messages should be tuples,
# msg[0] should be string
if msg[0] == 'reset':
o = e.reset(difficulty=2)
conn.send(o)
elif msg[0] == 'step':
ordi = e.step(msg[1])
conn.send(ordi)
else:
conn.close()
del e
return
except:
conn.close()
del e
raise
# class that manages the interprocess communication and expose itself as a RunEnv.
class ei: # Environment Instance
def __init__(self,vis):
self.pc, self.cc = Pipe()
self.p = Process(
target = standalone_headless_isolated,
args=(self.cc,vis,)
)
self.p.daemon = True
self.p.start()
def reset(self):
self.pc.send(('reset',))
return self.pc.recv()
def step(self,actions):
self.pc.send(('step',actions,))
try:
return self.pc.recv()
except EOFError:
return None
def __del__(self):
self.pc.send(('exit',))
#print('(ei)waiting for join...')
self.p.join()
# Added by Andrew Liao
# for NoisyNet-DQN (using Factorised Gaussian noise)
# modified from ```dense``` function
def sample_noise(shape):
noise = np.random.normal(size=shape).astype(np.float32)
#noise = np.ones(size=shape).astype(np.float32) # whenever not in training, simply return a matrix of ones.
return noise
global_p_a = 0.
global_q_a = 0.
global_p_v = 0.
global_q_v = 0.
def noisy_dense(x, size, name, bias=True, activation_fn=tf.identity, factorized=False):
global global_p_a
global global_q_a
global global_p_v
global global_q_v
# https://arxiv.org/pdf/1706.10295.pdf page 4
# the function used in eq.7,8 : f(x)=sgn(x)*sqrt(|x|)
def f(x):
return tf.multiply(tf.sign(x), tf.pow(tf.abs(x), 0.5))
# Initializer of \mu and \sigma
mu_init = tf.random_uniform_initializer(minval=-1*1/np.power(x.get_shape().as_list()[1], 0.5),
maxval=1*1/np.power(x.get_shape().as_list()[1], 0.5))
sigma_init = tf.constant_initializer(0.4/np.power(x.get_shape().as_list()[1], 0.5))
# Sample noise from gaussian
if name == 'global':
if size == 18: # check condition
p = sample_noise([128, 18]) # 256 is rnn_size
global_p_a = p
q = sample_noise([1, 18]) # 3 is action size
global_q_a = q
else:
p = sample_noise([128, 1]) # 256 is rnn_size
global_p_v = p
q = sample_noise([1, 1]) # 1 is value size
global_q_v = q
else: # for actors, copy p & q from the global network
if size == 3: # check condition
p = global_p_a
q = global_q_a
else:
p = global_p_v
q = global_q_v
f_p = f(p); f_q = f(q)
w_epsilon = f_p*f_q; b_epsilon = tf.squeeze(f_q)
if not factorized: # just resample the noisy matrix to get independent guassian noise
w_epsilon = tf.identity(sample_noise(w_epsilon.get_shape().as_list()))
# w = w_mu + w_sigma*w_epsilon
options = {18:'action',1:'value'}
w_mu = tf.get_variable(name + "/w_mu" + options[size], [x.get_shape()[1], size], initializer=mu_init)
w_sigma = tf.get_variable(name + "/w_sigma" + options[size], [x.get_shape()[1], size], initializer=sigma_init)
w = w_mu + tf.multiply(w_sigma, w_epsilon)
ret = tf.matmul(x, w)
if bias:
# b = b_mu + b_sigma*b_epsilon
b_mu = tf.get_variable(name + "/b_mu" + options[size], [size], initializer=mu_init)
b_sigma = tf.get_variable(name + "/b_sigma" + options[size], [size], initializer=sigma_init)
b = b_mu + tf.multiply(b_sigma, b_epsilon)
return activation_fn(ret + b)
else:
return activation_fn(ret)
# ================================================================
# Model components
# ================================================================
# Actor Network------------------------------------------------------------------------------------------------------------
class AC_Network():
def __init__(self,s_size,a_size,scope,trainer,noisy):
with tf.variable_scope(scope):
#Input and visual encoding layers
self.inputs = tf.placeholder(shape=[None,s_size],dtype=tf.float32)
self.imageIn = tf.reshape(self.inputs,shape=[-1,s_size,1])
# Create the model, use the default arg scope to configure the batch norm parameters.
''' conv1 = tf.nn.elu(tf.nn.conv1d(self.imageIn,tf.truncated_normal([2,1,8],stddev=0.1),2,padding='VALID'))
conv2 = tf.nn.elu(tf.nn.conv1d(conv1,tf.truncated_normal([3,8,16],stddev=0.05),1,padding='VALID'))
hidden = slim.fully_connected(slim.flatten(conv2),200,activation_fn=tf.nn.elu)'''
hidden = slim.fully_connected(slim.flatten(self.imageIn),300,activation_fn=tf.elu)
#Recurrent network for temporal dependencies
lstm_cell = tf.contrib.rnn.LayerNormBasicLSTMCell(128,dropout_keep_prob=0.8)
#lstm_cell = tf.contrib.rnn.DropoutWrapper(lstm_cell,output_keep_prob=0.5)
c_init = np.zeros((1, lstm_cell.state_size.c), np.float32)
h_init = np.zeros((1, lstm_cell.state_size.h), np.float32)
self.state_init = [c_init, h_init]
c_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.c])
h_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.h])
self.state_in = (c_in, h_in)
rnn_in = tf.expand_dims(hidden, [0])
step_size = tf.shape(self.imageIn)[:1]
state_in = tf.contrib.rnn.LSTMStateTuple(c_in, h_in)
lstm_outputs, lstm_state = tf.nn.dynamic_rnn(
lstm_cell, rnn_in, initial_state=state_in, sequence_length=step_size,
time_major=False)
lstm_c, lstm_h = lstm_state
self.state_out = (lstm_c[:1, :], lstm_h[:1, :])
rnn_out = tf.reshape(lstm_outputs, [-1, 128])
if noisy:
# Apply noisy network on fully connected layers
# ref: https://arxiv.org/abs/1706.10295
self.policy = tf.clip_by_value(noisy_dense(rnn_out,name=scope, size=a_size, activation_fn=tf.nn.relu),0.0,1.0)
self.value = noisy_dense(rnn_out,name=scope, size=1) # default activation_fn=tf.identity
else:
#Output layers for policy and value estimations
mu = slim.fully_connected(rnn_out,a_size,activation_fn=tf.nn.elu,weights_initializer=normalized_columns_initializer(0.01),biases_initializer=None)
#var = slim.fully_connected(rnn_out,a_size,activation_fn=tf.nn.softplus,weights_initializer=normalized_columns_initializer(0.01),biases_initializer=None)
self.normal_dist = tf.contrib.distributions.Normal(mu, 0.05)
self.policy = tf.clip_by_value(self.normal_dist.sample(1),0.0,1.0) # self.normal_dist.sample(1)
self.value = slim.fully_connected(rnn_out,1,
activation_fn=None,
weights_initializer=normalized_columns_initializer(1.0),
biases_initializer=None)
#Only the worker network need ops for loss functions and gradient updating.
if scope != 'global':
self.actions = tf.placeholder(shape=[None,a_size],dtype=tf.float32)
self.target_v = tf.placeholder(shape=[None],dtype=tf.float32)
self.advantages = tf.placeholder(shape=[None],dtype=tf.float32)
#Loss functions
self.value_loss = 0.5 * tf.reduce_sum(tf.square(self.target_v - tf.reshape(self.value,[-1])))
self.log_prob = tf.reduce_sum(self.normal_dist.log_prob(self.actions),axis=1)
self.entropy = tf.reduce_sum(self.normal_dist.entropy(),axis=1) # encourage exploration
self.entropy = tf.reduce_sum(self.entropy,axis=0)
self.policy_loss = -tf.reduce_sum(self.log_prob*self.advantages,axis=0)
if noisy:
self.loss = 0.5 * self.value_loss + self.policy_loss
else:
self.loss = 0.5 * self.value_loss + self.policy_loss #- 0.01 * self.entropy
#Get gradients from local network using local losses
local_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
self.gradients = tf.gradients(self.loss,local_vars)
self.var_norms = tf.global_norm(local_vars)
grads,self.grad_norms = tf.clip_by_global_norm(self.gradients,40.0)
#Apply local gradients to global network
#Comment these two lines out to stop training
global_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'global')
self.apply_grads = trainer.apply_gradients(zip(grads,global_vars))
# Learning to run Worker------------------------------------------------------------------------------------------------------------
class Worker():
def __init__(self,name,s_size,a_size,trainer,model_path,global_episodes,noisy,is_training):
self.name = "worker_" + str(name)
self.number = name
self.model_path = model_path
self.trainer = trainer
self.global_episodes = global_episodes
self.increment = self.global_episodes.assign_add(1)
self.episode_rewards = []
self.episode_lengths = []
self.episode_mean_values = []
self.summary_writer = tf.summary.FileWriter("train_"+str(self.number))
self.noisy = noisy
self.is_training = is_training
#Create the local copy of the network and the tensorflow op to copy global paramters to local network
self.local_AC = AC_Network(s_size,a_size,self.name,trainer,noisy)
#self.local_AC_target = AC_Network(s_size,a_size,self.name+'/target',trainer,noisy)
self.update_local_ops = update_target_graph('global',self.name)
#self.update_local_ops_target = update_target_graph('global/target',self.name+'/target')
#self.update_global_target = update_target_network(self.name,'global/target')
# Initialize a random process the Ornstein-Uhlenbeck process for action exploration
self.exploration_noise = OUNoise(a_size)
def train(self,rollout,sess,gamma,bootstrap_value):
rollout = np.array(rollout)
observations = rollout[:,0]
actions = rollout[:,1]
rewards = rollout[:,2]
# reward clipping: scale and clip the values of the rewards to the range -1,+1
#rewards = (rewards - np.mean(rewards)) / np.max(abs(rewards))
next_observations = rollout[:,3] # Aug 1st, notice next observation is never used
values = rollout[:,5]
# Here we take the rewards and values from the rollout, and use them to
# generate the advantage and discounted returns.
# The advantage function uses "Generalized Advantage Estimation"
self.rewards_plus = np.asarray(rewards.tolist() + [bootstrap_value])
discounted_rewards = discount(self.rewards_plus,gamma)[:-1]
self.value_plus = np.asarray(values.tolist() + [bootstrap_value])
advantages = rewards + gamma * self.value_plus[1:] - self.value_plus[:-1]
advantages = discount(advantages,gamma)
# Update the global network using gradients from loss
# Generate network statistics to periodically save
rnn_state = self.local_AC.state_init
feed_dict = {self.local_AC.target_v:discounted_rewards,
self.local_AC.inputs:np.vstack(observations),
self.local_AC.actions:np.vstack(actions),
self.local_AC.advantages:advantages,
self.local_AC.state_in[0]:rnn_state[0],
self.local_AC.state_in[1]:rnn_state[1]}
l,v_l,p_l,e_l,g_n,v_n,_ = sess.run([self.local_AC.loss,self.local_AC.value_loss,
self.local_AC.policy_loss,
self.local_AC.entropy,
self.local_AC.grad_norms,
self.local_AC.var_norms,
self.local_AC.apply_grads],
feed_dict=feed_dict)
return l / len(rollout), v_l / len(rollout),p_l / len(rollout),e_l / len(rollout), g_n,v_n
def work(self,max_episode_length,gamma,sess,coord,saver):
if self.is_training:
episode_count = sess.run(self.global_episodes)
else:
episode_count = 0
wining_episode_count = 0
total_steps = 0
print ("Starting worker " + str(self.number))
with open('result.txt','w') as f:
f.write(strftime("Starting time: %a, %d %b %Y %H:%M:%S\n", gmtime()))
explore = 1000
if self.name == 'worker_1':
self.env = ei(vis=False)#RunEnv(visualize=True)
else:
self.env = ei(vis=False)#RunEnv(visualize=False)
with sess.as_default(), sess.graph.as_default():
#not_start_training_yet = True
while not coord.should_stop():
# start the env (in the thread) every 50 eps to prevent memory leak
if episode_count % 50 == 0:
if self.env != None:
del self.env
if self.name == 'worker_1':
self.env = ei(vis=True)#RunEnv(visualize=True)
else:
self.env = ei(vis=False)#RunEnv(visualize=False)
self.setting=2
sess.run(self.update_local_ops)
#sess.run(self.update_local_ops_target)
episode_buffer = []
episode_values = []
episode_reward = 0
episode_step_count = 0
done = False
seed = np.random.rand()
self.env.reset()
# engineered initial input to make agent's life easier
a=engineered_action(seed)
ob = self.env.step(a)[0]
s = ob
ob = self.env.step(a)[0]
s1 = ob
s = process_state(s,s1)
rnn_state = self.local_AC.state_init
explore -= 1
#st = time()
chese=0
while done == False:
#Take an action using probabilities from policy network output.
action,v,rnn_state = sess.run([self.local_AC.policy,self.local_AC.value,self.local_AC.state_out],
feed_dict={self.local_AC.inputs:[s],
self.local_AC.state_in[0]:rnn_state[0],
self.local_AC.state_in[1]:rnn_state[1]})
if not (episode_count % 5 == 0 and self.name == 'worker_1') and self.is_training:
if explore > 0: # > 0 turn on OU_noise # test the agent every 2 eps
a = np.clip(action[0,0]+self.exploration_noise.noise(),0.0,1.0)
else:
a = action[0,0]
if chese < 60 and episode_count < 250:
a=engineered_action(seed)
chese += 1
else:
a = action[0,0]
ob,r,done,_ = self.env.step(a)
'''
if self.name == 'worker_0':
ct = time()
print(ct-st)
st = ct
'''
if done == False:
s2 = ob
else:
s2 = s1
s1 = process_state(s1,s2)
#print(s1)
episode_buffer.append([s,a,r,s1,done,v[0,0]])
episode_values.append(v[0,0])
episode_reward += r
s = s1
s1 = s2
total_steps += 1
episode_step_count += 1
# If the episode hasn't ended, but the experience buffer is full, then we
# make an update step using that experience rollout.
'''
if len(episode_buffer) == 120 and done != True and episode_step_count != max_episode_length - 1: # change pisode length to 5, and try to modify Worker.train() function to utilize the next frame to train imagined frame.
# Since we don't know what the true final return is, we "bootstrap" from our current
# value estimation.
if self.is_training:
v1 = sess.run(self.local_AC.value,
feed_dict={self.local_AC.inputs:[s],
self.local_AC.state_in[0]:rnn_state[0],
self.local_AC.state_in[1]:rnn_state[1]})[0,0]
l,v_l,p_l,e_l,g_n,v_n = self.train(episode_buffer,sess,gamma,v1)
sess.run(self.update_local_ops)
episode_buffer = []
'''
if done == True:
break
self.episode_rewards.append(episode_reward)
self.episode_lengths.append(episode_step_count)
self.episode_mean_values.append(np.mean(episode_values))
# Update the network using the experience buffer at the end of the episode.
if len(episode_buffer) != 0:
if self.is_training:
l,v_l,p_l,e_l,g_n,v_n = self.train(episode_buffer,sess,gamma,0.0)
#print(l,v_l,p_l,e_l,g_n,v_n)
#sess.run(self.update_global_target)
# Periodically save gifs of episodes, model parameters, and summary statistics.
if episode_count % 5 == 0 and episode_count != 0:
mean_reward = np.mean(self.episode_rewards[-5:])
mean_length = np.mean(self.episode_lengths[-5:])
mean_value = np.mean(self.episode_mean_values[-5:])
summary = tf.Summary()
summary.value.add(tag='Perf/Reward', simple_value=float(mean_reward))
summary.value.add(tag='Perf/Length', simple_value=float(mean_length))
summary.value.add(tag='Perf/Value', simple_value=float(mean_value))
if self.is_training:
summary.value.add(tag='Losses/Value Loss', simple_value=float(v_l))
summary.value.add(tag='Losses/Policy Loss', simple_value=float(p_l))
summary.value.add(tag='Losses/Entropy', simple_value=float(e_l))
self.summary_writer.add_summary(summary, episode_count)
self.summary_writer.flush()
if self.name == 'worker_1':
with open('result.txt','a') as f:
f.write("Episode "+str(episode_count)+" reward (testing): %.2f\n" % episode_reward)
if self.name == 'worker_0':
with open('result.txt','a') as f:
f.write("Episodes "+str(episode_count)+" mean reward (training): %.2f\n" % mean_reward)
if episode_count % 100 == 0:
saver.save(sess,self.model_path+'/model-'+str(episode_count)+'.cptk')
with open('result.txt','a') as f:
f.write("Saved Model at episode: "+str(episode_count)+"\n")
if self.name == 'worker_0' and self.is_training:
sess.run(self.increment)
episode_count += 1
if self.name == "worker_1" and episode_reward > 2.:
wining_episode_count += 1
print('Worker_1 is stepping forward in Episode {}! Reward: {:.2f}. Total percentage of success is: {}%'.format(episode_count, episode_reward, int(wining_episode_count / episode_count * 100)))
with open('result.txt','a') as f:
f.wirte('Worker_1 is stepping forward in Episode {}! Reward: {:.2f}. Total percentage of success is: {}%\n'.format(episode_count, episode_reward, int(wining_episode_count / episode_count * 100)))
# All done Stop trail
# Confirm exit
print('Exit/Done '+self.name)