|
a |
|
b/A3C/main.py |
|
|
1 |
from model import * |
|
|
2 |
import argparse |
|
|
3 |
import sys |
|
|
4 |
import os |
|
|
5 |
worker_threads = [] |
|
|
6 |
|
|
|
7 |
def main(): |
|
|
8 |
|
|
|
9 |
parser = argparse.ArgumentParser(description='Train or test neural net motor controller') |
|
|
10 |
parser.add_argument('--load_model', dest='load_model', action='store_true', default=False) |
|
|
11 |
parser.add_argument('--num_workers', dest='num_workers',action='store',default=1,type=int) |
|
|
12 |
args = parser.parse_args() |
|
|
13 |
|
|
|
14 |
max_episode_length = 1000 |
|
|
15 |
gamma = .995 # discount rate for advantage estimation and reward discounting |
|
|
16 |
s_size = 41 |
|
|
17 |
a_size = 18 # Agent can move Left, Right, or Straight |
|
|
18 |
model_path = './models' |
|
|
19 |
load_model = args.load_model |
|
|
20 |
noisy=False |
|
|
21 |
num_workers = args.num_workers |
|
|
22 |
print(" num_workers = %d" % num_workers) |
|
|
23 |
print(" noisy_net_enabled = %s" % str(noisy)) |
|
|
24 |
print(" load_model = %s" % str(args.load_model)) |
|
|
25 |
|
|
|
26 |
tf.reset_default_graph() |
|
|
27 |
|
|
|
28 |
if not os.path.exists(model_path): |
|
|
29 |
os.makedirs(model_path) |
|
|
30 |
|
|
|
31 |
|
|
|
32 |
with tf.device("/cpu:0"): |
|
|
33 |
global_episodes = tf.Variable(0,dtype=tf.int32,name='global_episodes',trainable=False) |
|
|
34 |
trainer = tf.train.AdamOptimizer(learning_rate=1e-4) |
|
|
35 |
master_network = AC_Network(s_size,a_size,'global',None,noisy) # Generate global network |
|
|
36 |
num_cpu = multiprocessing.cpu_count() # Set workers ot number of available CPU threads |
|
|
37 |
workers = [] |
|
|
38 |
# Create worker classes |
|
|
39 |
for i in range(args.num_workers): |
|
|
40 |
worker = Worker(i,s_size,a_size,trainer,model_path,global_episodes,noisy,is_training= True) |
|
|
41 |
workers.append(worker) |
|
|
42 |
|
|
|
43 |
saver = tf.train.Saver() |
|
|
44 |
|
|
|
45 |
'''networks = ['global'] + ['worker_'+i for i in str(range(num_workers))] |
|
|
46 |
print(networks)''' |
|
|
47 |
#key = print_tensors_in_checkpoint_file('./tmp/checkpoints/mobilenet_v1_0.50_160.ckpt', tensor_name='',all_tensors=True) |
|
|
48 |
#print(key) |
|
|
49 |
|
|
|
50 |
with tf.Session() as sess: |
|
|
51 |
coord = tf.train.Coordinator() |
|
|
52 |
if load_model == True: |
|
|
53 |
print ('Loading Model...') |
|
|
54 |
ckpt = tf.train.get_checkpoint_state(model_path) |
|
|
55 |
saver.restore(sess,ckpt.model_checkpoint_path) |
|
|
56 |
print('loading Model succeeded') |
|
|
57 |
else: |
|
|
58 |
''' |
|
|
59 |
dict = {} |
|
|
60 |
value = slim.get_model_variables('global'+'/MobilenetV1') |
|
|
61 |
for variable in value: |
|
|
62 |
name = variable.name.replace('global'+'/','').split(':')[0] |
|
|
63 |
#print(name) |
|
|
64 |
if name in key: |
|
|
65 |
dict[name] = variable |
|
|
66 |
#print(dict) |
|
|
67 |
#print(dict) |
|
|
68 |
init_fn = slim.assign_from_checkpoint_fn( |
|
|
69 |
os.path.join(checkpoints_dir, 'mobilenet_v1_0.50_160.ckpt'), |
|
|
70 |
dict) |
|
|
71 |
init_fn(sess)''' |
|
|
72 |
sess.run(tf.global_variables_initializer()) |
|
|
73 |
|
|
|
74 |
# This is where the asynchronous magic happens. |
|
|
75 |
# Start the "work" process for each worker in a separate thread. |
|
|
76 |
|
|
|
77 |
for worker in workers: |
|
|
78 |
worker_work = lambda: worker.work(max_episode_length,gamma,sess,coord,saver) |
|
|
79 |
#worker.start(setting=0,vis=True) |
|
|
80 |
t = threading.Thread(target=(worker_work)) |
|
|
81 |
t.daemon = True |
|
|
82 |
t.start() |
|
|
83 |
worker_threads.append(t) |
|
|
84 |
coord.join(worker_threads) |
|
|
85 |
|
|
|
86 |
if __name__ == "__main__": |
|
|
87 |
try: |
|
|
88 |
main() |
|
|
89 |
except KeyboardInterrupt: |
|
|
90 |
print("Ctrl-c received! Sending kill to threads...") |
|
|
91 |
for t in worker_threads: |
|
|
92 |
t.kill_received = True |